# 3-PRR parallel chain manipulator Project Report MAE 593 

Suchismit Mahapatra

## Introduction:

The 3PRR parallel chain manipulator has an analytical solution.
$X_{E E}=D_{i} \cos \theta_{1 i}+L_{1 i} \cos \theta_{2 i}+L_{2 i} \cos \theta_{3 i}+X_{B i}(i=1,2,3)$
$Y_{E E}=D_{i} \sin \theta_{1 i}+L_{1 i} \sin \theta_{2 i}+L_{2 i} \sin \theta_{3 i}+Y_{B i}(i=1,2,3)$
$\emptyset_{E E}=\theta_{3 i}+\delta_{3 i}(i=1,2,3)$
Thus for given $\left(X_{E E}, Y_{E E}, \emptyset_{E E}\right)$ we can solve for $\left(D_{i}, \theta_{2 i}\right)$ in case of inverse kinematics and vice versa for forward kinematics.

$$
\begin{gathered}
D_{i} \cos \theta_{1 i}+L_{1 i} \cos \theta_{2 i}=X_{E E}-X_{B i}-L_{2 i} \cos \theta_{3 i} \\
D_{i} \sin \theta_{1 i}+L_{1 i} \sin \theta_{2 i}=Y_{E E}-Y_{B i}-L_{2 i} \sin \theta_{3 i}
\end{gathered}
$$

Differentiating with respect to time gives

$$
\begin{gathered}
\dot{D}_{i} \cos \theta_{1 i}-L_{1 i} \sin \theta_{2 i} \dot{\theta}_{2 i}=\dot{X}_{E E}+L_{2 i} \sin \theta_{3 i} \dot{\theta}_{3 i}(i=1,2,3) \\
\dot{D}_{i} \sin \theta_{1 i}+L_{1 i} \cos \theta_{2 i} \dot{\theta}_{2 i}=\dot{Y}_{E E}-L_{2 i} \cos \theta_{3 i} \dot{\theta}_{3 i}(i=1,2,3) \\
\dot{\theta}_{3 i}=\dot{\emptyset}_{E E}(i=1,2,3)
\end{gathered}
$$

Thus we have,

$$
A *\left(\begin{array}{c}
\dot{D}_{1} \\
\dot{D}_{2} \\
\dot{D}_{3} \\
\dot{\theta}_{21} \\
\dot{\theta}_{22} \\
\dot{\theta}_{23}
\end{array}\right)+B *\left(\begin{array}{c}
\dot{X}_{E E} \\
\dot{Y}_{E E} \\
\dot{\emptyset}_{E E}
\end{array}\right)=0
$$

where $A=\left(\begin{array}{ccc}1 & 0 & -L_{21} \sin \theta_{31} \\ 1 & 0 & -L_{22} \sin \theta_{32} \\ 1 & 0 & -L_{23} \sin \theta_{33} \\ 0 & 1 & L_{21} \cos \theta_{31} \\ 0 & 1 & L_{22} \cos \theta_{32} \\ 0 & 1 & L_{23} \cos \theta_{33}\end{array}\right)$
and $B=$

$\left(\begin{array}{cccccc}\cos \theta_{11} & 0 & 0 & -L_{11} \sin \theta_{21} & 0 & 0 \\ 0 & \cos \theta_{12} & 0 & 0 & -L_{12} \sin \theta_{22} & 0 \\ 0 & 0 & \cos \theta_{13} & 0 & 0 & -L_{13} \sin \theta_{23} \\ \sin \theta_{11} & 0 & 0 & L_{11} \cos \theta_{21} & 0 & 0 \\ 0 & \sin \theta_{12} & 0 & 0 & L_{12} \cos \theta_{22} & 0 \\ 0 & 0 & \sin \theta_{13} & 0 & 0 & L_{13} \cos \theta_{23}\end{array}\right.$
and $J=-\operatorname{inverse}(B) * A$

Forward Kinematics


$$
\begin{gathered}
\left(D_{1}, D_{2}, D_{3}\right)=(3.44,2.93,2.38),\left(\theta_{11}, \theta_{12}, \theta_{13}\right) \\
=(40.11,140.83,270)
\end{gathered}
$$

Please see drop box folder for code.

Inverse Kinematics:


$$
(X E E, Y E E)=(0.25,0.433)
$$

Please see drop box folder for code.

## Workspace:



Please see drop box folder for code.

## Circle Tracing:



Please see drop box folder for code.

## Ellipse Tracing:



Please see drop box folder for code.

## Control:

The Jacobian J and inverse (J) are given by
$J=-\operatorname{inverse}(B) * A$
inverse $(J)=-$ inverse $(A) * B$

and $B=$
$\left(\begin{array}{cccccc}\cos \theta_{11} & 0 & 0 & -L_{11} \sin \theta_{21} & 0 & 0 \\ 0 & \cos \theta_{12} & 0 & 0 & -L_{12} \sin \theta_{22} & 0 \\ 0 & 0 & \cos \theta_{13} & 0 & 0 & -L_{13} \sin \theta_{23} \\ \sin \theta_{11} & 0 & 0 & L_{11} \cos \theta_{21} & 0 & 0 \\ 0 & \sin \theta_{12} & 0 & 0 & L_{12} \cos \theta_{22} & 0 \\ 0 & 0 & \sin \theta_{13} & 0 & 0 & L_{13} \cos \theta_{23}\end{array}\right.$

1) Open Loop Control:

Open loop control was achieved using the matlab ode 45 function.

$$
\dot{\theta}_{\text {openloop }}=\operatorname{inverse}(J) *\left(\begin{array}{c}
\dot{X}_{E E} \\
\dot{Y}_{E E} \\
\dot{\emptyset}_{E E}
\end{array}\right)
$$

$$
\dot{\theta}_{\text {openloop }}=-\operatorname{inverse}(B) * A *\left(\begin{array}{c}
\dot{X}_{E E} \\
\dot{Y}_{E E} \\
\dot{\emptyset}_{E E}
\end{array}\right)
$$




Timeline for $\left(D_{1}, D_{2}, D_{3}, \theta_{11}, \theta_{12}, \theta_{13}\right)$
Please see drop box folder for code for open loop control.


Timeline for $\left(D_{1}, D_{2}, D_{3}, \theta_{11}, \theta_{12}, \theta_{13}\right)$
Please see drop box folder for code for open loop control.

## 2) Closed Loop Control (Joint Space):

$$
\begin{gathered}
\dot{\theta}_{\text {openloop }}=-\operatorname{inverse}(B) * A *\left(\begin{array}{c}
\dot{X}_{E E} \\
\dot{Y}_{E E} \\
\dot{\emptyset}_{E E}
\end{array}\right) \\
\dot{\theta}_{\text {total }}=\dot{\theta}_{\text {openloop }}+K *\left\{\left(\begin{array}{l}
D_{1 \text { desired }} \\
D_{2} \text { desired } \\
D_{3 \text { desired }} \\
\theta_{11} \text { desired } \\
\theta_{12} \text { desired } \\
\theta_{13} \text { desired }
\end{array}\right)-\left(\begin{array}{c}
D_{1} \\
D_{2} \\
D_{3} \\
\theta_{11} \\
\theta_{12} \\
\theta_{13}
\end{array}\right)\right\} \\
\dot{\theta}_{\text {total }}=- \text { inverse }(B) * A *\left(\begin{array}{c}
\dot{X}_{E E} \\
\dot{Y}_{E E} \\
\dot{\emptyset}_{E E}
\end{array}\right)+K \\
*\left\{\left(\begin{array}{c}
D_{1_{\text {desired }}} \\
D_{2 \text { desired }} \\
D_{3 \text { desired }} \\
\theta_{11} \text { desired } \\
\theta_{12} \text { desired } \\
\theta_{13} \text { desired }
\end{array}\right)-\left(\begin{array}{c}
D_{1} \\
D_{2} \\
D_{3} \\
\theta_{11} \\
\theta_{12} \\
\theta_{13}
\end{array}\right)\right\}
\end{gathered}
$$




Timeline for $\left(D_{1}, D_{2}, D_{3}, \theta_{11}, \theta_{12}, \theta_{13}\right)$
Please see drop box folder for code for closed loop control.


Timeline for $\left(D_{1}, D_{2}, D_{3}, \theta_{11}, \theta_{12}, \theta_{13}\right)$
Please see drop box folder for code for closed loop control.

## 3) Closed Loop Control (Task Space):

$$
\begin{aligned}
\dot{\theta}_{\text {closed }}= & \text { inverse }(J) \\
& *\left\{\left(\begin{array}{c}
\dot{X}_{E E} \\
\dot{Y}_{E E} \\
\dot{\emptyset}_{E E}
\end{array}\right)+K *\left\{\left(\begin{array}{c}
X_{E E} \text { desired } \\
Y_{E E}{ }_{\text {desired }} \\
\emptyset_{E E} \text { desired }
\end{array}\right)-\left(\begin{array}{c}
X_{E E} \\
Y_{E E} \\
\emptyset_{E E}
\end{array}\right)\right\}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\dot{\theta}_{\text {closed }}= & -\operatorname{inverse}(B) * A \\
& *\left\{\left(\begin{array}{c}
\dot{X}_{E E} \\
\dot{Y}_{E E} \\
\dot{\emptyset}_{E E}
\end{array}\right)+K *\left\{\left(\begin{array}{c}
X_{E E} \text { desired } \\
Y_{E E} \text { desired } \\
\emptyset_{E E} \text { desired }
\end{array}\right)-\left(\begin{array}{c}
X_{E E} \\
Y_{E E} \\
\emptyset_{E E}
\end{array}\right)\right\}\right\}
\end{aligned}
$$




Timeline for $\left(D_{1}, D_{2}, D_{3}, \theta_{11}, \theta_{12}, \theta_{13}\right)$
Please see drop box folder for code for closed loop control.


Timeline for $\left(D_{1}, D_{2}, D_{3}, \theta_{11}, \theta_{12}, \theta_{13}\right)$
Please see drop box folder for code for closed loop control.

Manipulability:
The Jacobian J and inverse (J) are given by
$J=-\operatorname{inverse}(B) * A$
inverse $(J)=-\operatorname{inverse}(A) * B$
where $A=\left(\begin{array}{ccc}1 & 0 & -L_{21} \sin \theta_{31} \\ 1 & 0 & -L_{22} \sin \theta_{32} \\ 1 & 0 & -L_{23} \sin \theta_{33} \\ 0 & 1 & L_{21} \cos \theta_{31} \\ 0 & 1 & L_{22} \cos \theta_{32} \\ 0 & 1 & L_{23} \cos \theta_{33}\end{array}\right)$
and $B$
$=\left(\begin{array}{cccccc}\cos \theta_{11} & 0 & 0 & -L_{11} \sin \theta_{21} & 0 & 0 \\ 0 & \cos \theta_{12} & 0 & 0 & -L_{12} \sin \theta_{22} & 0 \\ 0 & 0 & \cos \theta_{13} & 0 & 0 & -L_{13} \sin \\ \sin \theta_{11} & 0 & 0 & L_{11} \cos \theta_{21} & 0 & 0 \\ 0 & \sin \theta_{12} & 0 & 0 & L_{12} \cos \theta_{22} & 0 \\ 0 & 0 & \sin \theta_{13} & 0 & 0 & L_{13} \cos \theta\end{array}\right.$

1) Yoshikawa Measure of Manipulability

$$
Y M O M=\sqrt[2]{\operatorname{det}(J * \operatorname{transpose}(J))}
$$

For $L=5, R=8$


For $L=3, R=6$


Please see drop box folder for code for Yoshikawa measure of manipulability.
2) Isotropy Index Measure of Manipulability

$$
\begin{gathered}
U * \operatorname{Sigma} * \operatorname{transpose}(V)=\operatorname{SVD}(J) \\
\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \cdots \geq \sigma_{p} \\
I I M O M=\sigma_{p} / \sigma_{1}
\end{gathered}
$$

For $L=5, R=8$


For $L=3, R=6$


Please see drop box folder for code for Isotropy Index measure of manipulability.

## Appendix

Forward Kinematics http://www.youtube.com/watch?v=a7xhaLOnNgQ
Inverse Kinematics http://www.youtube.com/watch?v=3lui26pu7 Q
Workspace http://www.youtube.com/watch?v=X1XuG5JBSes
Circle/Ellipse tracing http://www.youtube.com/watch?v=YgYIR9T2|ls
Open Loop Control http://www.youtube.com/watch?v=nNBnEevXJQs
Task Space Closed Loop Control http://www.youtube.com/watch?v=BIOhLbwaimY
Joint Space Closed Loop Control http://www.youtube.com/watch?v=u6Es0GRB6d|
Isotropy Index Measure of Manipulability http://www.youtube.com/watch?v=j6a oTXjilTO
Yoshikawa Measure of Manipulability http://www.youtube.com/watch?v=DrsB7A8xwBA

