
2 Adaptive mean-shift clustering

Fast Clustering of Flow Cytometry Data via Adaptive Mean Shift

Suchismit Mahapatra, Jason Zhu, MengXiang Tang

BD Biosciences, San Jose, CA, USA

BD Biosciences    2350 Qume Drive, San Jose, CA 95131 bdbiosciences.com

 The Fast Adaptive Mean Shift adaptation was able to significantly 

alleviate the high computational costs associated with the Mean 

Shift algorithm. The speedups achieved are appreciable and will 

allow for more efficient and faster data processing.

 Future work in this direction will focus on more involved 

procedures i.e. developing a mixture model based approach 

supported by the above work which will allow to accurately classify 

and predict “leukemia” and “healthy” cases.

Abstract

Clustering of flow cytometry data in high-dimensional space is a major challenge in automated 

data analysis for high-throughput, multicolor flow cytometry. Various parametric and non-

parametric clustering algorithms have been applied to achieve this. Parametric approaches rely 

upon a priori knowledge of the number of clusters present as well as make assumptions regarding 

the shape of the clusters. Non-parametric techniques on the other hand, make no such 

assumptions, however they tend to be computationally expensive. Mean shift technique, 

belonging to the latter category, had been introduced earlier to the field for clustering of flow 

cytometry data. In this work, the authors use Locality Sensitive Hashing (LSH) for fast and efficient 

Nearest Neighbor searches, thereby reducing the computational costs of the adaptive Mean Shift 

procedure. Further, Multithreading is employed to achieve up to ≥15x speed ups in execution 

times. 

4 Fast Adaptive Mean Shift clustering

Context

The Mean Shift algorithm, belongs to the family of non-parametric density estimation based  

approaches in which the feature space is regarded as the empirical probability density function 

(pdf) of the represented parameters.  Dense regions in the feature space correspond to local 

maxima of the pdf, i.e. the modes of the unknown density distribution. The algorithm has been 

tested with clustering subset lymphocyte cell populations in typical multicolor 

immunophenotyping assays. The clustering results demonstrated a degree of high agreement 

with those obtained with a previously reported gating approach, based on a low dimensional 

mixture modeling approach, for well-studied subset populations as CD4, CD8, etc. The promising 

results call for further investigation of this highly capable clustering algorithm. It is noteworthy 

that the modes found by the mean-shift procedure can provide biologists with new insight into 

high-dimensional flow cytometry data, as well as enabling development of new methods for 

automated flow cytometry data analysis. 

1 Mean shift clustering

Figure 6. Adaptive mean-shift clustering was applied to clustering example data of a 6-color 

immunophenotyping assay with a bead counting process control. Panel A, B, C, D show the 2-D scatter 

plots for SSC vs PerCP, SSC vs FITC, PE-Cy7 vs APC-Cy7, and APC vs PE. 

Panel E, F, G, H present the results of fast adaptive mean shift clustering using a set of 2-D scatter plots. 

A total of 15 major clusters (populations) was identified, and each is labeled with a distinct color.

Fast Adaptive Mean shift clustering of a 

6-color immunophenotyping assay
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3 Locality Sensitive Hashing

Locality Sensitive Hashing allows us to compute fast and efficient Nearest Neighbor searches. It 

belongs to a novel and interesting class of algorithms that are known as randomized algorithms. A 

randomized algorithm does not guarantee an exact answer but instead provides a high probability 

guarantee that it will return the correct answer or one close to it. By investing additional computational 

effort, the probability can be pushed as high as desired.

Figure 1. Density estimation based approaches assume that the data points are samples from an 

underlying PDF.

Figure 3. Illustration of how Locality Sensitive Hashing was implemented via random hyperplanes. In 

the actual implementation, random hyperplanes parallel to the different co-ordinate axes were used 

since there was no need for 𝟐𝓚 partitions in general. Smaller values of 𝓚 meant many more data 

points in a single partition which resulted in more work per thread and reduced speed up. Increased 

values of 𝓛 which introduces redundancy to cover for inexactness also increased work load. 

Figure 5. In the bandwidth computation phase, individual data point bandwidth was computed. The 

computation involved solving a 𝒌NN query to determine the bandwidth value 𝓱𝒊 of the data point 𝒙𝒊. 

We experimented with multiple kernel profiles. The quality of results obtained with the Epanechnikov

kernel were found to be better in general and was used in this implementation. Rather than using critical 

sections or message passing techniques, the use of local buffers was found to give the speedup  

results. This is possibly due to the heaviness of the Mutual Exclusion objects as well as the frequent 

Context Switching which affected performance. 

Given 𝑵 data points {𝒙𝒊} where 𝒊 ∈ {𝟏, … ,𝑵} in ℝ𝑫 space, the sample point estimate obtained with kernel 

𝓚(𝒙) and bandwidth 𝓱 is given by,
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based on a spherically symmetric kernel 𝓚 with bounded support satisfying

𝓚 𝒙 = 𝓬𝓴,𝑫𝓴 𝒙 𝟐 > 𝟎, 𝒙 < 𝟏

is a non-parametric estimator of the density at the location 𝒙 in the feature space. The function 𝓴 𝒙 , 𝟎 ≤
𝒙 ≤ 𝟏 is called the profile of the kernel and 𝓬𝓴,𝑫 is a normalization constant which assures 

 ℝ𝑫𝓚 𝒙 ⅆ𝒙 = 𝟏 . The modes of the density function are located at 𝒙 𝛁𝓯 𝒙 = 𝟎 .

The gradient of the density estimator is given by,
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where 𝓰 𝒙 = −𝓱′(𝒙)

In the basic version of Mean Shift, a single global bandwidth value 𝓱 is employed for all the data 

points, whereas for the adaptive procedure, each data point 𝒙𝒊has its own bandwidth value 𝓱𝒊, 

depending on the local distribution of points only.

The bandwidth values associated with the data points have been defined using various methods in 

the statistical literature. Most techniques employ a pilot density estimate. The simplest way to do it 

is via the nearest neighbors. Let 𝒙𝒊,𝒌 be the 𝒌th nearest neighbor of the data point 𝒙𝒊. Thus, 

𝓱𝒊 = 𝒙𝒊 − 𝒙𝒊,𝒌
𝓹

The number of neighbors 𝒌 should be chosen large enough to assure that there is an increase in 

density within the support of most kernels having bandwidths 𝓱𝒊.

Figure 2. (Left) Illustration of Mean Shift procedure as it reaches convergence to a density gradient 

vanishing mode. (Right) Illustrations of the tessellations of the feature space, containing the basins 

of attraction, which are the regions for which all trajectories lead to the same mode.
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is called the mean-shift vector. At location 𝒙, the weighted mean of the data points selected with kernel 𝓖
is proportional to the density gradient estimate obtained with kernel 𝓚. Thus the mean shift vector 

always points towards the direction of the maximum increase in density. 

The Mean Shift procedure successively iterates over 

• Computation of the mean-shift vector 𝓶𝓖 𝒙𝒕
• Translation of the bandwidth window i.e. 𝒙𝒕+𝟏 = 𝒙𝒕 +𝓶𝓖 𝒙𝒕 , 𝒕 ∈ 𝟏, 𝟐…

It employs a hill climbing strategy till it converges to a location, called mode, where the density gradient 

vanishes. See Figure 2 for an illustration.

Figure 4. In the hashing phase, the high dimensional data points are mapped into a ℝ𝓚 tessellated 

feature space. The hashed values are stored in a map with the 𝓚 dimensional representation as the key 

and the high dimensional data points which have the same representation as the values. 

Experimentation using different number of threads was done to compare speedups achieved in all the 

different phases.

Figure 6. Speedups achieved for the Mean Shift procedure. 


