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Kronecker Product based Graph
Models (KPGM)

Parametric, uses seed matrices.
Can effectively model the structure of real networks
and model network properties.

Multiplicative nature of the model allows for fast
sampling of massive sized graphs.
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ability to capture the natural variability
observed in real world graphs
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Issues with KPGM based models
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Variance in population of graphs

Degree Power Law Coefficient

Illustration of the variance in power law coefficient

for a population of over 700 Autonomous Systems (AS)
graphs sampled at different time points.
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The xKPGM model

Employs a mixture-model

Algorithm 1 Graph Generation Algorithm for xXKPGM

based approach which Tput: 8,65, Or, 77,1

Output: Adjacency matrix A
: 1 P+1
allows it to capture the // untieq Phase
2 foreacht =110 [ do
3 \» 1 ~ Multinomial ()

variance in graphs. [ul
P+Pw6,
Uses two or more initiator Ry

4 foreacht =14+ 1 to n do

matrices of possibly s | A—RP: // R - mealization
. . 6 i ~ Multinomial(m)

different sizes L

7 A+ R(P)

P+ A6,
A k-length vector m which gt
defines the mixing
probabilities and a level
tying parameter |.
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The xKPGM model
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Illustration for the variation in # of edges for synthetic
graphs generated by mKPGM and xKPGM for varying
levels of tying (l).
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How the different models stack up

[ PADI[ ERGM[SI[ CLO | ATERTXN | KPGH T [ nKPGHTIIG || <KPGI_

1. Learnable
2. Scalable Learning

3. Scalable Generation
4. Match Local Properties
5. Capture Variance

CL and BTER models do not allow generation of
arbitrary sized synthetic graphs.
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Analytical Expression for Moments
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Moments are derived using the “permutation trick”
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Experimental Setup

Data sets used are publicly available data graph sets :-

as [23] CAIDA AS Relationship
Graph
ca-astroPh [23] | Collaboration network
of Arxiv Astro Physics
elegans [6] C. elegans metabolic

network
hep-ph [23] Citation npetwork from
Arxiv HEP-PH
netscience [17] | Coauthorship network
of scientists
protein [10] Protein interaction net-
work for Yeast
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Results - Matching moments
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Comparing xKPGM with other models in terms of
the objective function value obtained after training.
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Results - Capturing variance
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(a) Power Law Coefficient of Degree Distribution
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(c) Average Clustering Coefficient
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Results - Impact of # of seed matrices
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Performance of xKPGM using a different number of
initiator matrices for three different data sets.
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