Modeling Graphs Using a Mixture of Kronecker Models

Suchismit Mahapatra suchismi@buffalo.edu

Varun Chandola chandola@buffalo.edu

Department of Computer Science & Engineering

University at Buffalo The State University of New York

Generative models for graphs

- Allow us to generate synthetic graphs which closely capture the properties of real world graphs.
- Should be ideally parametric which allow for learning to be able to generate graphs of arbitrary size.
- Should be able to scale to massive graph sizes.

Why generative models for graphs?

- Limited availability of real world graph data, mainly due to high cost and privacy concerns.
- Allow us to extrapolate/produce realistic simulations at a desired scale.
- Provide anonymity.
- Allow researchers to simulate/understand "flow".
- Enable us to study how graphs grow over time.

Kronecker Product based Graph Models (KPGM)

• Parametric, uses seed matrices. $\mathcal{P}_1 = \Theta = \begin{bmatrix} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \end{bmatrix}$

$$\mathcal{P}_1 = \Theta = \left[\begin{array}{cc} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \end{array} \right]$$

- Can effectively model the structure of real networks and model network properties.
- Multiplicative nature of the model allows for fast sampling of massive sized graphs.

$$\mathbf{C} = \mathbf{A} \otimes \mathbf{B} \doteq \begin{pmatrix} a_{1,1}\mathbf{B} & a_{1,2}\mathbf{B} & \dots & a_{1,m}\mathbf{B} \\ a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} & \dots & a_{2,m}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}\mathbf{B} & a_{n,2}\mathbf{B} & \dots & a_{n,m}\mathbf{B} \end{pmatrix} \stackrel{\mathcal{P}_n = \underbrace{\mathcal{P}_1 \otimes \mathcal{P}_1 \otimes \dots \otimes \mathcal{P}_1}_{n \text{ times}}}{}$$

$$\mathcal{P}_n = \underbrace{\mathcal{P}_1 \otimes \mathcal{P}_1 \otimes \ldots \otimes \mathcal{P}_1}_{n \text{ times}}$$

Other generative model variants

- Erdos-Renyi (ER) [18] earliest model, fails to capture properties of real-world graphs.
- Exponential Random Graph Models (ERGM) [25] stochastic log linear model.
- Stochastic Block Models (SBM) [24] based on clusters and memberships of nodes to each.
- Chung-Lu (CL) [1] captures degree distribution.
- Block Two-Level Erdos-Renyi (BTER) [20] match degree distribution, clustering coefficient, not "truly" generative.

Issues with KPGM based models

- Lack the ability to capture the natural variability observed in real world graphs.
 - Synthetic graphs sampled from KPGM show little variation in terms of several graph properties.
- Seshadri et al. [21] have shown that graphs generated from KPGM have 50-75% isolated vertices.
- Tied-KPGM (tKPGM), mixed-KPGM (mKPGM) [14] models proposed to alleviate the issues
 - Not expressive enough.

Issues with KPGM based models

note: Images taken from [12]

Variance in population of graphs

- Real world graphs can be thought of as being generated from a natural process.
- Examples include :
 - graphs collected at different times i.e. snapshots of graphs.
 - social networks for different groups of people (e.g., schools)
 - healthcare networks for different spatial regions.
 - road networks etc.
- Populations of graphs generated by the same process exhibit a natural variance in terms of the structural properties.

Variance in population of graphs

Illustration of the variance in power law coefficient for a population of over 700 Autonomous Systems (AS) graphs sampled at different time points.

The xKPGM model

- Employs a mixture-model based approach which allows it to capture the variance in graphs.
- Uses two or more initiator matrices of possibly different sizes
- A k-length vector π which defines the mixing probabilities and a level tying parameter I.

```
Algorithm 1 Graph Generation Algorithm for xKPGM
  Input: \Theta_1, \Theta_2, \dots, \Theta_k, \pi, n, l
  Output: Adjacency matrix A
        // Untied Phase
2 foreach t = 1 to l do
        i \sim Multinomial(\pi)
        \mathcal{P} \leftarrow \mathcal{P} \otimes \Theta_i
        Tied Phase
4 foreach t = l + 1 to n do
        A \leftarrow R(\mathcal{P});
                                                   //\ R - Realization
       i \sim Multinomial(\pi)
        \mathcal{P} \leftarrow A \otimes \Theta_i
7 A \leftarrow R(\mathcal{P})
  return A
```

函

The xKPGM model

Illustration for the variation in # of edges for synthetic graphs generated by mKPGM and xKPGM for varying levels of tying (l).

xKPGM – A generic model

- Different KPGM based models are specific instances of the xKPGM model:-
 - \rightarrow k = 1 and l = 1, xKPGM reduces to tKPGM.
 - \triangleright k = 1 and l = n, xKPGM reduces to KPGM.
 - \geqslant k = 1 and 1 \leq l < n, xKPGM reduces to mKPGM.

How the different models stack up

	PA [3]	ERGM [25]	CL [1]	BTER [20]	KPGM [12]	mKPGM [16]	xKPGM
1. Learnable	X	√	See note	See note	\checkmark	√	
2. Scalable Learning	_	\checkmark	_	_	\checkmark	×	
3. Scalable Generation	×	×		\checkmark	$\sqrt{}$	\checkmark	
4. Match Local Properties	X	×	X	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
5. Capture Variance	×	X	X	X	X	$\sqrt{}$	

 CL and BTER models do not allow generation of arbitrary sized synthetic graphs.

Learning Parameters

- Employs a method of moments approach to learn parameters
 - Initiator matrices and mixing probability vector
- Each graph is represented as a set of *moments*
 - Number of edges, triangles, hairpins, etc.
- We derive analytical expressions for expected value of each moment as a function of the parameters
- Find parameters that best fit the expected values

Analytical Expression for Moments

$$\begin{split} 2\mathbb{E}[\mathbf{E}] &= \prod_{i=1}^{n} (a_{i} + 2b_{i} + c_{i})^{\pi_{i}n} - \prod_{i=1}^{n} (a_{i} + c_{i})^{\pi_{i}n} \\ 2\mathbb{E}[\mathbf{H}] &= \prod_{i=1}^{n} ((a_{i} + b_{i})^{2} + (b_{i} + c_{i})^{2})^{\pi_{i}n} - 2\prod_{i=1}^{n} (a_{i}(a_{i} + b_{i}) + c_{i}(c_{i} + b_{i}))^{\pi_{i}n} - \prod_{i=1}^{n} (a_{i}^{2} + 2b_{i}^{2} + c_{i}^{2})^{\pi_{i}n} + 2\prod_{i=1}^{n} (a_{i}^{2} + c_{i}^{2})^{\pi_{i}n} \\ 6\mathbb{E}[\mathbf{T}] &= \prod_{i=1}^{n} ((a_{i} + b_{i})^{3} + (b_{i} + c_{i})^{3})^{\pi_{i}n} - 3\prod_{i=1}^{n} (a_{i}(a_{i} + b_{i})^{2} + c_{i}(b_{i} + c_{i})^{2})^{\pi_{i}n} \\ - 3\prod_{i=1}^{n} (a_{i}^{3} + c_{i}^{3} + b_{i}(a_{i}^{2} + c_{i}^{2}) + b_{i}^{2}(a_{i} + c_{i}) + 2b_{i}^{3})^{\pi_{i}n} + 2\prod_{i=1}^{n} (a_{i}^{3} + 2b_{i}^{3} + c_{i}^{3})^{\pi_{i}n} \\ + 5\prod_{i=1}^{n} (a_{i}^{3} + c_{i}^{3} + b_{i}^{2}(a_{i} + c_{i}))^{\pi_{i}n} + 4\prod_{i=1}^{n} (a_{i}^{3} + c_{i}^{3} + b_{i}(a_{i}^{2} + c_{i}^{2}))^{\pi_{i}n} - 6\prod_{i=1}^{n} (a_{i}^{3} + c_{i}^{3})^{\pi_{i}n} \\ 6\mathbb{E}[\Delta] &= \prod_{i=1}^{n} (a_{i}^{3} + 3b_{i}^{2}(a_{i} + c_{i}) + c_{i}^{3})^{\pi_{i}n} - 3\prod_{i=1}^{n} (a_{i}(a_{i}^{2} + b_{i}^{2}) + c_{i}(b_{i}^{2} + c_{i}^{2}))^{\pi_{i}n} + 2\prod_{i=1}^{n} (a_{i}^{3} + b_{i}^{3})^{\pi_{i}n} \\ 6\mathbb{E}[\Delta] &= \prod_{i=1}^{n} (a_{i}^{3} + 3b_{i}^{2}(a_{i} + c_{i}) + c_{i}^{3})^{\pi_{i}n} - 3\prod_{i=1}^{n} (a_{i}(a_{i}^{2} + b_{i}^{2}) + c_{i}(b_{i}^{2} + c_{i}^{2}))^{\pi_{i}n} + 2\prod_{i=1}^{n} (a_{i}^{3} + b_{i}^{3})^{\pi_{i}n} \\ 6\mathbb{E}[\Delta] &= \prod_{i=1}^{n} (a_{i}^{3} + 3b_{i}^{2}(a_{i} + c_{i}) + c_{i}^{3})^{\pi_{i}n} - 3\prod_{i=1}^{n} (a_{i}(a_{i}^{2} + b_{i}^{2}) + c_{i}(b_{i}^{2} + c_{i}^{2}))^{\pi_{i}n} + 2\prod_{i=1}^{n} (a_{i}^{3} + b_{i}^{3})^{\pi_{i}n} \\ 6\mathbb{E}[\Delta] &= \prod_{i=1}^{n} (a_{i}^{3} + 3b_{i}^{2}(a_{i} + c_{i}) + c_{i}^{3})^{\pi_{i}n} - 3\prod_{i=1}^{n} (a_{i}(a_{i}^{2} + b_{i}^{2}) + c_{i}(b_{i}^{2} + c_{i}^{2}))^{\pi_{i}n} + 2\prod_{i=1}^{n} (a_{i}^{3} + b_{i}^{3})^{\pi_{i}n} \\ 6\mathbb{E}[\Delta] &= \prod_{i=1}^{n} (a_{i}^{3} + b_{i}^{3})^{\pi_{i}n} - 3\prod_{i=1}^{n} (a_{i}^{3} + b_{i}^{3})^{\pi_{i}n} - 3\prod_{i=1}^{n} (a_{i}^{3} + b_{i}^{3})^{\pi_{i}n} \\ 6\mathbb{E}[\Delta] &= \prod_{i=1}^{n} (a_{i}^{3} + b_{i}^{3})^{\pi_{i}n} - 3\prod_{i=1}^{n} (a_{i}^{3} + b_{i}^{3})$$

Moments are derived using the "permutation trick"

 n_k times

The "Permutation Trick"

- A graph generated using an arbitrary sequence of initialization matrices is equivalent to the following canonical sequence: $(\Theta_1 \otimes \Theta_1 ...) \otimes (\Theta_2 \otimes \Theta_2 ...) \otimes ... \otimes (\Theta_k \otimes \Theta_k ...)$
- For two matrices A and B: $A \otimes B = M(B \otimes A)N$ where M and N are permutation matrices.
- This helps in finding the exact expressions for moments

Parameter estimation for xKPGM

• The estimation method searches for parameters θ_1 , $\theta_2, \theta_3, \dots, \pi$ which minimizes

$$f(\Theta, \mathbf{F}^*) = \sum_{i=1}^{|\mathbf{F}|} w_i \left(\frac{F_i^* - \mathbb{E}[F_i | \Theta]}{F_i^*} \right)^2$$

- The aim is to find model parameters for which the expected moments for the model match closely with the moments computed from the observed graph.
- Can be extended to learn from multiple graph instances.

Experimental Setup

Data sets used are publicly available data graph sets:-

Name	Description	Nodes	Edges
as [23]	CAIDA AS Relationship	6,474	13,233
	Graph		
ca-astroPh [23]	Collaboration network	18,772	396,160
	of Arxiv Astro Physics		
elegans [6]	 C. elegans metabolic 	453	4,596
	network		_
hep-ph [23]	Citation network from	34,546	421,578
11	Arxiv HEP-PH	,	
netscience [17]	Coauthorship network	1,589	5,484
	of scientists	,	,
protein [10]	Protein interaction net-	1,870	4,480
1	work for Yeast		

Experimental Setup

- Employed a variant of the forest fire model to generate 200 subgraphs from the real world graphs and measured characteristics of the subgraphs.
- For each model, we used the estimated parameters and generate 200 samples of appropriate sizes.
- To evaluate our model we used salient characteristics of graphs:-
 - Power law co-efficient
 - Average path length
 - Average clustering co-efficient
 - # of edges
 - # of triangles

Results - Matching moments

Comparing xKPGM with other models in terms of the objective function value obtained after training.

函

Results - Capturing variance

Results - Impact of # of seed matrices

Performance of xKPGM using a different number of initiator matrices for three different data sets.

函

Summary

- xKPGM, the proposed generative model induces robust variability for multiple graph features while retaining the strong capabilities of KPGM, i.e. scaling to massive graphs.
- Using the method of moments approach allows for scalable learning.
- xKPGM outperforms state of art methods both in terms of matching the graph properties and the variance in the population.

Future work

- Seshadri et al. [21] have demonstrated that graphs generated from KPGM have 50-75% isolated vertices.
 - Highly undesirable, need to address this.
- Currently we are using hairpins, tri-pins, triangle counts as our moments.
 - Can we find "better" moments which are more representative of substructure in graphs?
- Kronecker products lend themselves beautifully to graph substructure clustering.
- Twitter etc. have multiple modes of operation information and social networks within them.