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Generative models for graphs

• Allow us to generate synthetic graphs which closely 

capture the properties of real world graphs.

• Should be ideally parametric which allow for 

learning to be able to generate graphs of arbitrary 

size.

• Should be able to scale to massive graph sizes.



Why generative models for graphs ?

• Limited availability of real world graph data, mainly 

due to high cost and privacy concerns.

• Allow us to extrapolate/produce realistic 

simulations at a desired scale.

• Provide anonymity.

• Allow researchers to simulate/understand “flow”.

• Enable us to study how graphs grow over time.



Kronecker Product based Graph 
Models (KPGM)

• Parametric, uses seed matrices.

• Can effectively model the structure of real networks 

and model network properties.

• Multiplicative nature of the model allows for fast 

sampling of massive sized graphs.

note: Images taken from [12]



Other generative model variants

• Erdos-Renyi (ER) [18] – earliest model, fails to 

capture properties of real-world graphs.

• Exponential Random Graph Models (ERGM) [25] –

stochastic log linear model.

• Stochastic Block Models (SBM) [24] – based on 

clusters and memberships of nodes to each.

• Chung-Lu (CL) [1] - captures degree distribution.

• Block Two-Level Erdos-Renyi (BTER) [20] - match 

degree distribution, clustering coefficient, not 

“truly” generative.



Issues with KPGM based models

• Lack the ability to capture the natural variability 

observed in real world graphs.

• Synthetic graphs sampled from KPGM show little 

variation in terms of several graph properties.

• Seshadri et al. [21] have shown that graphs 

generated from KPGM have 50-75% isolated vertices.

• Tied-KPGM (tKPGM), mixed-KPGM (mKPGM) [14] 

models proposed to alleviate the issues 

• Not expressive enough.



Issues with KPGM based models

note: Images taken from [12]



Variance in population of graphs

• Real world graphs can be thought of as being 

generated from a natural process.

• Examples include :-
• graphs collected at different times i.e. snapshots of graphs.

• social networks for different groups of people (e.g., schools)

• healthcare networks for different spatial regions.

• road networks etc.

• Populations of graphs generated by the same 

process exhibit a natural variance in terms of the 

structural properties.



Variance in population of graphs

Illustration of the variance in power law coefficient

for a population of over 700 Autonomous Systems (AS) 

graphs sampled at different time points.



The xKPGM model

• Employs a mixture-model 

based approach which 

allows it to capture the 

variance in graphs.

• Uses two or more initiator 

matrices of possibly 

different sizes

• A k-length vector π which 

defines the mixing 

probabilities and a level 

tying parameter l.



The xKPGM model

Illustration for the variation in # of edges for synthetic 

graphs generated by mKPGM and xKPGM for varying 

levels of tying (l).



xKPGM – A generic model

• Different KPGM based models are specific instances 

of the xKPGM model:-

 k = 1 and l = 1, xKPGM reduces to tKPGM.

 k = 1 and l = n, xKPGM reduces to KPGM.

 k = 1 and 1 ≤ l < n, xKPGM reduces to mKPGM.



How the different models stack up

• CL and BTER models do not allow generation of 

arbitrary sized synthetic graphs.



Learning Parameters

• Employs a method of moments approach to learn 

parameters

• Initiator matrices and mixing probability vector

• Each graph is represented as a set of moments

• Number of edges, triangles, hairpins, etc.

• We derive analytical expressions for expected value 

of each moment as a function of the parameters

• Find parameters that best fit the expected values



Analytical Expression for Moments

Moments are derived using the “permutation trick”



The “Permutation Trick”

• A graph generated using an arbitrary sequence of 

initialization matrices is equivalent to the following 

canonical sequence:

• For two matrices A and B:

where M and N are permutation matrices.

• This helps in finding the exact expressions for 

moments



Parameter estimation for xKPGM

• The estimation method searches for parameters 𝜃1,
𝜃2, 𝜃3,… ,π which minimizes

• The aim is to find model parameters for which the 

expected moments for the model match closely with 

the moments computed from the observed graph.

• Can be extended to learn from multiple graph 

instances.



Experimental Setup

Data sets used are publicly available data graph sets :-



Experimental Setup

• Employed a variant of the forest fire model to 

generate 200 subgraphs from the real world graphs 

and measured characteristics of the subgraphs.

• For each model, we used the estimated parameters 

and generate 200 samples of appropriate sizes.

• To evaluate our model we used salient 

characteristics of graphs :-
• Power law co-efficient

• Average path length

• Average clustering co-efficient

• # of edges

• # of triangles



Results - Matching moments

Comparing xKPGM with other models in terms of

the objective function value obtained after training.



Results - Capturing variance



Results - Impact of # of seed matrices

Performance of xKPGM using a different number of 

initiator matrices for three different data sets.



Summary

• xKPGM, the proposed generative model induces 

robust variability for multiple graph features while 

retaining the strong capabilities of KPGM, i.e. 

scaling to massive graphs.

• Using the method of moments approach allows for 

scalable learning.

• xKPGM outperforms state of art methods both in 

terms of matching the graph properties and the 

variance in the population.



Future work

• Seshadri et al. [21] have demonstrated that graphs 

generated from KPGM have 50-75% isolated vertices.
• Highly undesirable, need to address this.

• Currently we are using hairpins, tri-pins, triangle 

counts as our moments.
• Can we find “better” moments which are more representative of 

substructure in graphs ?

• Kronecker products lend themselves beautifully to 

graph substructure clustering.

• Twitter etc. have multiple modes of operation –

information and social networks within them.


