PRRR serial chain manipulator Project Report MAE 593

Suchismit Mahapatra

Introduction:

The PRRR serial chain manipulator is redundant. matlab fmincon was used to determine the inverse kinematics of the system for a given end effector position.
$X E E=D+L 1 \cos \theta_{1}+L 2 \cos \theta_{2}+L 3 \cos \theta_{3}$
$Y E E=L 1 \sin \theta_{1}+L 2 \sin \theta_{2}+L 3 \sin \theta_{3}$

We define $f_{1}\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)$ and $f_{2}\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)$ as below and try to minimize the objective function $g\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)$ as below:-
$f_{1}\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)$
$=D+L 1 \cos \theta_{1}+L 2 \cos \theta_{2}+L 3 \cos \theta_{3}-X E E$
$f_{2}\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)=L 1 \sin \theta_{1}+L 2 \sin \theta_{2}+L 3 \sin \theta_{3}-Y E E$
$g\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)=\sqrt[2]{\left(f_{1}\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)^{2}+f_{2}\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)^{2}\right)}$
We use fmincon wherein we try to
$\min \left(g\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)\right)$ such that $0 \leq D \leq D_{\max }$

Forward Kinematics:

$$
(D, L 1, L 2, L 3)=(0.6,1.5,1,2),\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=(60,90,120)
$$

Please see drop box folder for code.

Inverse Kinematics:

$$
(X E E, Y E E)=(-2,-1)
$$

Please see drop box folder for code.

Workspace:

Please see drop box folder for code.

Circle Tracing:

Please see drop box folder for code.

Ellipse Tracing:

Please see drop box folder for code.

Control:

The Jacobian J is given by

$$
J=\left(\begin{array}{llll}
d f_{1} / d D & d f_{1} / d \theta_{1} & d f_{1} / d \theta_{2} & d f_{1} / d \theta_{3} \\
d f_{2} / d D & d f_{2} / d \theta_{1} & d f_{2} / d \theta_{2} & d f_{2} / d \theta_{3}
\end{array}\right)
$$

1) Open Loop Control:

Open loop control was achieved using the matlab ode 45 function.

$$
\begin{gathered}
\text { pinv } J=\operatorname{transpose}(J) * \operatorname{inverse}(J * \operatorname{transpose}(J)) \\
\dot{\theta}_{\text {openloop }}=\text { pinvJ } *\binom{\dot{X}}{\dot{Y}}
\end{gathered}
$$

Timeline for $\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)$
Please see drop box folder for code for open loop control.

Timeline for $\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)$
Please see drop box folder for code for open loop control.

2) Closed Loop Control (Joint Space):

$$
\begin{aligned}
& \dot{\theta}_{\text {total }}=\dot{\theta}_{\text {openloop }}+K *\left\{\left(\begin{array}{c}
D_{\text {desired }} \\
\theta_{1_{\text {desired }}} \\
\theta_{2_{\text {desired }}} \\
\theta_{3_{\text {desired }}}
\end{array}\right)-\left(\begin{array}{c}
D \\
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right)\right\} \\
& \dot{\theta}_{\text {total }}=\operatorname{pinvJ} *\binom{\dot{X}}{\dot{Y}}+K *\left\{\left(\begin{array}{c}
D_{\text {desired }} \\
\theta_{1_{\text {desired }}} \\
\theta_{2_{\text {desired }}} \\
\theta_{3_{\text {desired }}}
\end{array}\right)-\left(\begin{array}{c}
D \\
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right)\right\}
\end{aligned}
$$

Timeline for $\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)$
Please see drop box folder for code for closed loop control.

Timeline for $\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)$
Please see drop box folder for code for closed loop control.

3) Closed Loop Control (Task Space):

$$
\dot{\theta}_{\text {closed }}=\text { pinvJ } *\left\{\binom{\dot{X}}{\dot{Y}}+K *\left\{\binom{X_{\text {desired }}}{Y_{\text {desired }}}-\binom{X}{Y}\right\}\right\}
$$

Timeline for $\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)$
Please see drop box folder for code for closed loop control.

Timeline for $\left(D, \theta_{1}, \theta_{2}, \theta_{3}\right)$
Please see drop box folder for code for closed loop control.

Manipulability:

The Jacobian J is given by

$$
J=\left(\begin{array}{llll}
d f_{1} / d D & d f_{1} / d \theta_{1} & d f_{1} / d \theta_{2} & d f_{1} / d \theta_{3} \\
d f_{2} / d D & d f_{2} / d \theta_{1} & d f_{2} / d \theta_{2} & d f_{2} / d \theta_{3}
\end{array}\right)
$$

1) Yoshikawa Measure of Manipulability

$$
Y M O M=\sqrt[2]{\operatorname{det}(J * \operatorname{transpose}(J))}
$$

Please see drop box folder for code for Yoshikawa measure of manipulability.
2) Isotropy Index Measure of Manipulability

$$
U * \operatorname{Sigma} * \operatorname{transpose}(V)=S V D(J)
$$

$$
\begin{gathered}
\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \cdots \geq \sigma_{p} \\
I I M O M=\sigma_{p} / \sigma_{1}
\end{gathered}
$$

Please see drop box folder for code for Isotropy Index measure of manipulability.
3) Manipulability Ellipsoids

Please see drop box folder for code for manipulability ellipsoids.

Appendix

Forward Kinematics http://www.youtube.com/watch?v=yESIf2PsD6g
Inverse Kinematics http://www.youtube.com/watch?v=Bls7HWrkxHA
Workspace http://www.youtube.com/watch?v=f5f1TCPc5Gs
Circle/Ellipse tracing http://www.youtube.com/watch?v=r2oCkZSAfy8
Open Loop Control http://www.youtube.com/watch?v=yIJCD7 EZvU
Task Space Closed Loop Control http://www.youtube.com/watch?v=gfCA28yxF8k

Joint Space Closed Loop Control http://www.youtube.com/watch?v=0BQs7XfaEeA

Isotropy Index Measure of Manipulability http://www.youtube.com/watch?v=tE7zzhBiqyo
Yoshikawa Measure of Manipulability http://www.youtube.com/watch?v=CpM4n1pHX8w

Manipulability Ellipsoids http://www.youtube.com/watch?v=q7aB8xQ6teQ

