
A Cold Start Recommendation System
Using Item Correlation and User Similarity

Suchismit Mahapatra
Department of CSE
University at Buffalo
Buffalo, NY 14226

suchismi@buffalo.edu

Alwin Tareen
Department of CSE
University at Buffalo
Buffalo, NY 14226

tareen@buffalo.edu

Ying Yang
Department of CSE
University at Buffalo
Buffalo, NY 14226

yyang25@buffalo.edu

ABSTRACT
Conventional recommendation systems tend to focus on vari-
ations of well-known information retrieval techniques. We
took a fresh approach, rather than to follow the traditional,
commonly applied recommendation methodology of creating
a user-item matrix, and then using them to make recommen-
dations. Instead, we established and examined three types
of relationships: user-user similarity, wine-wine similarity
and user preference relationships, in the form of adjacency
lists. Using this approach, we did not encounter the usual
problems associated with large dimension matrices, such as
sparsity [5] and synonymy, as well as the basic problems of
storing the large matrix, and having to perform a large num-
ber of computations every single time. We attempted to
address the synonymy problem by using the wine-wine sim-
ilarity index we formed. Also, we developed a model that
took care of the cold start [6] problem which is fairly com-
mon in recommendation systems. We attempted to address
the grey sheep problem as well, by minimizing the effect of
any one outlying element, and taking the overall cumulative
effect of all the elements. With our recommendation system,
we wanted to establish a relationship of trust with the user,
because just a few erroneous values would greatly discredit
our models.

In this paper, we defined 25 attributes by which a wine
could be classified, and determined the wine-wine and user-
user similarities, as well as the user preferences for the wines
he has tried so far using our own novel scoring mechanism.
The wines as such have had no scores associated with them
with regards to the 25 attributes, rather, the scores were
meaningful only when the relationships between the two
wines were considered. We defined our own two method-
ologies, cold start and top k1, k2 models to address the
issues associated with recommendation systems. Our ex-
perimental results showed that the newly introduced cold
start model performed better than the traditional models
of pure content-based [3], pure collaborative-based and con-
tent + colloborative based [10, 1] approaches with regards to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSE 635 ’11 Buffalo, NY USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

the quality. Also, our top k1, k2 model performed almost
as well as the content + colloborative based model. Our
resulting wine recommendations were consistent with the
expectations of the user’s particular wine tastes.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—information filtering, retrieval mod-
els; I.2.6 [Artificial Intelligence]: Learning—knowledge
acquisition

General Terms
Algorithms, Experimentation, Theory

Keywords
Recommendation model, collaborative filtering, content fil-
tering, cold start problem, grey sheep problem, sparsity, syn-
onymy

1. INTRODUCTION
The objective of this project was to create a recommen-

dation system for wines based on a series of descriptive at-
tribute phrases and classifier tags. Such a system was com-
posed of several distinct modules, which were responsible
for the bulk of the decision making process. There were
several different types of algorithms that contributed to the
final decisions, and the recommendation system utilized a
blend of these. We regarded user similarity as a basic com-
parison of terms. We defined item correlation as a concept
that extended that of similarity by considering more fac-
tors, in our case, brand, region, price, etc. We extended a
similar line of thinking in our project, since the item-item
algorithms performed better than the user-user algorithms.
We have strived to make the item-item correlation as accu-
rate as possible, since it makes a larger contribution to good
recommendations.

The first part of the project dealt with collecting the re-
spective data for the input of the system. We used an iter-
ative approach for this. This task was accomplished with a
smart web crawler, directed toward three wine-based vendor
websites, namely, eBacchus.com, wine.com and tastings.

com. We selected these three websites because they had good
quality wine tasting notes, and the reviewers had a high level
of expertise. Once a significant amount of data had been re-
trieved, it was parsed into its constituent pieces. We used
Stanford’s part-of-speech tagging tool to extract attribute

phrases based on lexical patterns, such as adjective-adjective,
or adjective-noun. We learnt from the verbose, poetic style
of language that was usually employed by the various wine
reviewers and experts. Then, a database schema was estab-
lished, where each of the column headings corresponded to a
type of wine, a vintage, a price, etc. Specifically, we derived
all of the various attributes that a wine could have, and we
populated our database with those attributes. Once we had
a suitable table of data to work with, we were able to apply
various information retrieval techniques.

With the wine data set in place, our next task was to an-
alyze the various attributes that were associated with each
wine. We applied a word frequency count to the entire data
set, which produced a list of the most commonly expressed
attributes. We selected the top 25 attributes from this list,
for use as classification tags. By tagging the attributes[8] in
the data set with one or more of these classifiers, we were
able to create a level of normalization. Then, we investi-
gated the levels of commonality that existed between var-
ious pairs of wines our data set. From this investigation,
we were able to create a Wine-Wine Similarity Index, which
expressed the level of similarity between a particular wine,
and other wines on a top-N [2] ranked list. Jaccard’s coeffi-
cient was used to calculate the degree of similarity. Higher
scores were assigned to pairs of wines that exhibited close
levels of attribute similarity, and some weight was also given
to region and brand identifiers.

The next stage in our project was to determine the rela-
tionships between the types of wine-purchasing customers[3]
in our data set. Specifically, we had to establish groups or
clusters of customers, that is, people who had similar tastes
or interests in wine. This was also known as neighborhood
formation. We applied Jaccard’s coefficient to compute the
level of similarity between users. When the similarities be-
tween all pairs of users had been established, we created a
User-User Similarity Index. For each user, we created a list
of wines that the system believed they had a strong pref-
erence for. We wanted to avoid false positives in our sys-
tem at all costs, because they could cause customers to lose
faith in our recommendations. In this paper, we used a four-
pronged approach to make our recommendations: wine-wine
similarity, user-user similarity, attribute-classification based
and user preference.

User
B: A:

similar wine tastes similar wine tastes
+ +

dissimilar wine prices similar wine prices
User

C: D:
dissimilar wine prices similar wine prices

+ +
dissimilar wine tastes dissimilar wine tastes

Table 1: Feature comparison. A > B > C > D. In
our case, [similar wines] > [wines with similar prices]

2. RELATED WORK
In our recommendation system, we decided to take a dif-

ferent approach to the problem. Existing approaches tend
to focus on user-item matrix techniques, and their models

reflect this line of thinking. We still do similarity calcula-
tions, but in a different way. There are some concepts that
we use, which are common to most currently existing recom-
mendation systems. Namely, we use model-based collabora-
tive filtering, content filtering, clustering and neighborhood
formation.

Collaborative filtering-based recommender systems rely
on information derived from the social activities of users,
such as opinions or ratings, to form predictions, or produce
recommendation lists. Existing collaborative filtering tech-
niques involve generating a user-item matrix, from which
recommendation results could be derived. Content-based
filtering focuses on the selection of relevant items from a
large data set, things that a particular user has a high prob-
ability of liking. This involves training the data set with
maching learning techniques. Clustering involves sectioning
the data set into particular sets, each of which correspond
to certain preference criteria. Also, typical recommendation
systems output their results either as predictions, a numeri-
cal ranking value corresponding to a particular item or rec-
ommendations, a list of relevant items.

The conventional approaches to computing similarity in-
volve the use of two popular techniques: pearson correlation
similarity, given by Equation 1, and cosine similarity, given
by Equation 2. We used Jaccard’s coefficient in our models,
to compute similarity.

Pearson
Correlation
Similarity

=

Pl
j=1(rij − r̄i)(rkj − r̄k)qPl

j=1(rij − r̄i)2
Pl

j=1(rkj − r̄k)2
(1)

Cosine Similarity =
X

j

rijqP
j r2

ij

rkjqP
j r2

kj

(2)

Shi[9] has proposed a novel approach to the collaborative
filtering technique, by generating a list of top-N recommen-
dations, then applying a re-ranking algorithm to this list. In
this manner, the recommendation list becomes more refined
by using the information derivable from the original data
set. We intend to build upon this technique in our future
work.

3. DATA ACQUISITION

3.1 Crawling and Parsing of the Data
We surveyed many wine-specific websites to use as poten-

tial data crawling candidates, but we decided to use three
particular ones: eBacchus.com, wine.com and tastings.

com. We discovered that the various wine tasting notes
that were listed on these websites were of a particularly high
quality, and they were mostly composed of relevant content.
Also, the types of reviewers that tended to post comments
on these websites tended to be highly knowledgeable in the
area of wine tasting expertise.

We attempted to use currently available website crawling
tools to achieve our data collection, such as 80legs, nutch
and ASPSeek. However, we found that these web crawlers
were unnecessarily complicated to use, and they simply did
not meet our specific needs. Therefore, we wrote our own
Java-based crawler, and used smart crawling techniques that
satisfied certain patterns. We collected a total of 28000 in-
dividual wine review files, however, we discovered that the

majority of these did not contain any useful wine review in-
formation. So, we discarded those particular reviews, and
we also merged the wines that were in common, into single
wine files. After this, our data set contained 6000 wines.

We used the open-source tool Apache Tika to remove the
HTML tags from each of these files. Then, we wrote multi-
ple bash scripts to remove the various headers, footers and
erroneous data from these files. Once the cleaning of the
data was complete, we moved on to the part-of-speech tag-
ging phase. In order to accomplish this task, we used the
Stanford Log-Linear Part of Speech Tagger. This tool en-
abled us to accurately identify the particular types of words
in our wine files, such as adjectives, adverbs and nouns. The
information contained in these specific tags represented the
most relevant types of information that could be used to
deduce similarity (see Figure 1).

Figure 1: Crawling and cleaning

Our next task was to remove unintended and irrelevant
groups of words from our data set, such as usernames or geo-
graphic locations. We extracted all of the attributes, and de-
termined 27 lexical patterns that represented highly signifi-
cant word groupings, such as adjective-adjective or adjective-
conjunction-noun. We sorted through each of these word
groupings, line by line, and retained the relevant ones into
filter files. Then, we cross-referenced these filter files with
our wine attribute files, and this resulted in clean, relevant
data. Also, we performed a thorough spell check on each of
the filter terms, to ensure that our resulting data set was of
a high quality (see Figure 2).

3.2 Classification of Attributes
When we examined the wine data set, we discovered that

the vast majority of attribute terms were of an ambiguous
nature. That is, they tended to be somewhat subjective,
and their intended meaning wasn’t always expressly clear.
As such, we decided to place each of these attributes into
individual class categories.

We were then faced with the problem of defining the indi-
vidual class categories, and we devised a novel solution for
this. We ran a word frequency counter on the entire data
set, and selected the top 25 relevant terms as our classifier
tags. A sample set of the top 10 terms, along with their
respective frequency counts, are given in Figure 3. The full
set of the attribute classifier tags that we selected are listed

Figure 2: Parsing and filtering

in Table 2.
Our next task was to examine each of the attribute phrases

in our data set, and tag them with one or more of our clas-
sifier tags. In the example in Figure 4, the phrase “flavorful
clean fresh” was tagged with the classes taste and freshness.
This proved to be a mundane, labor-intensive process, as
there were roughly 30000 attribute phrases that had to be
manually inspected and tagged. We managed to successfully
tag about 20000 of the attributes, and those were the ones
that contributed to our models.

Figure 3: Relative frequency of classifier tags (T = 10)

3.3 Database Integration
We parsed each of the 6000 wine attribute files and in-

serted them into a MySQL database. Also, we included
files that contained information that was specific to the in-
dentification of each wine, such as name, brand, region and
vintage. Since we used three different websites to collect
the data, our parsing strategy had to be modified to suit

taste fruity spicy
sweetness balance fullness
texture finish depth
freshness crispness strength
dryness tannin smoothness
fragrance color complexity
mineral acidity vintage
category subjective transparency
priceopinion

Table 2: Attribute classifier tags (T = 25)

Figure 4: Attribute classification

each one. After all the data from the wine attribute files
had been collected, we generated the User-Wine Preference,
the Wine-Wine Similarity and User-User Similarity Indexes,
using the equations discussed in the section 4.

Figure 5: Database integration

4. WINE INDEXING THEORY
According to [7], the item-based algorithms worked better

than the user-based algorithms. In our models, we have
followed a similar line of reasoning, by giving more weight
to the Wine-Wine Similarity values, than to the User-User
Similarity values.

4.1 User-Wine Preference

We defined wine frequency as the number of times a par-
ticular user has purchased a certain wine, irrespective of the
number of bottles in each individual purchase.

In our analysis, when a user bought a wine with a wine fre-
quency of 1, it need not represent his fondness for the wine,
but instead, it might represent an experimental or gift pur-
chase. Such a purchase would have no relation to his partic-
ular tastes. Wines with a wine frequency of 2 or greater can
not represent coincidence, in general circumstances. Also,
the user does not like wines with a wine frequency of 2,
twice as much as he likes the wines with a wine frequency of
1. Rather, it represents a more damped version of interest
which can be represented by the formula 1 + log(freq).

We found that, by increasing wine frequencies, such as 3
from 2, represent a smaller increase of affinity. Thus, we
found the above formula to appropriately represent the fre-
quency relation. The number of bottles the user purchased
can be a good estimate of his interest for that particular
wine. We have used made extensive use of the log function
to dampen the overall effect, and to maintain a uniform scor-
ing profile. In Equation 3, the numerators for the different
cases evaluated to numbers less than 1.7. Therefore, we used
the value of 1.7 in the denominator, which along with the
multiplier of 10, gave us scores in the range of 0 to 10.

UPI Score =
log(Nbot × (1 + log(freq)))

1.7
× 10 (3)

4.2 Wine-Wine Similarity
Each wine had a certain number of attribute phrases asso-

ciated with it. Some of these phrases were highly relevant,
while other were less so. In order to deal with this sort
of attribute variation, we devised a system of classification
tagging. First, we applied a word frequency count to the
entire wine data set, and selected the top 25 most popular
terms for use as classification tags. Then, we applied one or
more of these tags to each of the attribute phrases that were
associated with every wine. In doing so, we were able to
sufficiently categorize each of these attributes. When wine1

and wine2 were compared with each other, their respective
attributes and classifier tags were matched up, and Jaccard’s
Coefficient (Equation 5) was applied to determine the degree
of similarity between wine1 and wine2.

scorei = JC(wine1attri, wine2attri) (4)

=
wine1attri ∩ wine2attri

wine1attri ∪ wine2attri
(5)

Two other similarity aspects that we wanted to introduce
into our calculations were the brand and region similarities.
These were evaluated according to Equations 6 and 7.

score(brand) = δ(x, y)

0.5 if x = y

0 if x 6= y
(6)

score(region) = δ(x, y)

0.1 if x = y

0 if x 6= y
(7)

Once the above three terms had been determined, the
Wine-Wine Similarity Index(WWSI) between wine1 and wine2

was the sum of these three components as given by Equation
8.

WWSI Score =
1

N

NX
i=1

scorei + score(brand) + score(region)

(8)
Where i is one of the attributes in each wine.

Figure 6: Wine-Wine Similarity dimension space.

Lower distance(wi,wj) =⇒ wi and wj are similar. If

user Ui likes wi =⇒ high probability that user Ui will

like wj to a similar degree.

4.3 User-User Similarity
Consider the following, where U1 and U2 refer to particular

users from our user database. User U1 has tried m wines,
given by: wine1,wine2,. . . , winem, and User U2 has tried n
wines, given by: winem+1,winem+2,. . . , winem+n.

U1 = {wine1, wine2, . . . , winem}
U2 = {winem+1, winem+2, . . . , winem+n}

We calculated the similarity between the two wines by
considering both the price aspect and attribute list. We
define the Maximum Price Difference (MPD) as difference
between the maximum and minimum prices of the wines in
our database. For two wines, winei and winej , we define
f to be the difference between their prices divided by the
MPD as given in Equation 9.

f =
Price Differenceij

Maximum Price Difference
(9)

For wines winei and winej , scoreij is defined by Equation
10.

scoreij = JC(winei, winej) =
winei ∩ winej

winei ∪ winej
(10)

∀ attributes ∈ Attribute List

If the prices of winei and winej are very similar, then the
value of f in this case is very small. However, the price
similarity factor is high in this case, thus we have used a
factor of (1− f) to represent this relationship.

wine similarity average of scoreij

component
=

for the 25 attributes

We have calculated the Wine-Wine Similarity (WWS) us-
ing weight components of price similarity factor and wine
similarity component. We introduced a weight parameter of
α, and used it in Equation 11, where α = 0.8.

WWS = α× (1− f) + (1−α)× similarity component (11)

We define the User-User Similarity Index (UUSI) as given
by Equation 12.

UUSI =
1

U1 + U2

U1X
i=1

U2X
j=1

scoreij × (WWS) (12)

Figure 7: User-User Similarity dimension space. Points

U1, U2 represent users who are defined by the wines they

have tried thus far, namely wines w1, w2,. . . ,wm and

wines w4, w5,. . . ,wn (defined by the points as shown)

respectively. Lower distance(Ui,wj) =⇒ user Ui likes

wine wj more =⇒ user Ui will like wines closest to the

point wj to a similar degree.

5. RECOMMENDATION MODELS
We performed an analysis of the conventionally used method-

ologies that are popular in modern recommendation sys-

tems, namely, content and collaborative filtering. We ex-
amined a pure content based model, as well as a pure col-
laborative based model, based on user similarity. Then, we
combined these two methodologies into a blended form, and
analyzed its performance. In doing so, we wanted to estab-
lish a benchmark by which we could effectively measure our
two newly established recommendation models, namely, the
cold start model and the top k1, k2 model.

5.1 Pure Content Based Model
In this model, we applied the User Preference Index to

generate a list of recommended wines, for the particular user.

Algorithm 1: Pure content based

Input: user-wine preference list
Output: list of recommended wines

1 foreach wine in user-wine preference list for user do
2 put wine into list of recommended wines
3 end

5.2 Pure Collaborative Based Model
We performed calculations with the User-User Similarity

Index to produce the recommendation list. First we got
the list of similar users to the particular user in question,
along with the respective similarity scores. Subsequently, we
got the user preference lists for each of these similar users.
The wines in them formed the recommendation candidates.
We have used a combination of the user similarity scores
along with the user preference scores to get the most suitable
list of recommendations. We made use of an intermediate
list. This was where we scored wines using the User-User
Similarity Index value (which was a fractional value) and
the User Preference Index score, for that particular user. In
case a wine occurred in multiple user preference indexes, for
different users, we added this score to the running total. At
the end of this, we took the wines with the highest scores as
our recommendations.

Figure 8: User-user similarity matrix

5.3 Content + Collaborative Model
We determined the candidates for recommendation by us-

ing a combination of the User Preference Index, and the
Wine-Wine Similarity Index. First, we got the list of wines
in the User Preference Index, for that particular user. Sub-
sequently, we got the most similar wines to the previously
mentioned list using the Wine-Wine Similarity Index. We
made use of the same type of intermediate list strategy that
we used in the collaborative model, however, in this case,
we used the Wine-Wine Similarity Index and the User Pref-
erence Index as our inputs.

Algorithm 2: Pure collaborative based

Input: user-user similarity and user-wine preference
lists

Output: list of recommended wines
// intermed-list = intermediate list holding

wines, scores associated with them

1 foreach item in user-user similarity list for user do
2 similar-user = item.user
3 user-user-sim-score = item.score
4 foreach wine in user-wine preference list for

similar-user do
5 user-wine-score = user-user-sim-score ×

wine.user-pref-score
6 if intermed-list contains wine then

// update wine score for wine

7 intermed-list-wine-score =
intermed-list-wine-score + user-wine-score

8 end
9 else

10 put <wine, user-wine-score> into
intermed-list

11 end

12 end

13 end
14 put top ranked wines from intermed-list into list of

recommended wines

Algorithm 3: Content + Collaborative based

Input: wine-wine similarity and user-wine preference
lists

Output: list of recommended wines
// intermed-list = intermediate list holding

wines, scores associated with them

1 foreach item in user-wine preference list for user do
2 wine = item.wine
3 item-wine-score = item.wine-score
4 foreach sim-wine in wine-wine similarity list for

wine do
5 wine-score = item-wine-score ×

sim-wine.wine-score
6 if intermed-list does not contain sim-wine then
7 put <sim-wine, wine-score> into

intermed-list
8 end
9 else

// update wine score for sim-wine

10 intermed-list-sim-wine-score =
intermed-list-sim-wine-score + wine-score

11 end

12 end

13 end
14 put top ranked from intermed-list into list of

recommended wines

5.4 Cold Start Model
Typically, we encountered cases whree users have tried

very few wines. In these cases, recommending items for
them becomes pretty difficult, or biased. This is known as
the cold start problem. As such, we can’t make assumptions
about what the user might like, because they might result

in false positives, which erodes the trust factor[10]. In the
cold start model, we have attempted to tackle this problem.
The user starts with an initial list of wine preferences, and
an expanded list is formed from this, taking into account the
Wine-Wine Similarity Index. We then applied our aforemen-
tioned collaborative techniques on this expanded list, mak-
ing use of the intermediate list strategy with the expanded
list of user preferences and the Wine-Wine Similarity Index
as the inputs. The top ranked results from this procedure
are returned as recommendations.

We would like to explain a few situations that can oc-
cur in this model. Referring to the example in Figure 9,
the initial list contains wine34, wine23, wine37, wine81,
with wine34 on top. However, in the expanded list, wine68
has the highest score. This happened due to the cumulative
effects of wine68 being in the Wine-Wine Similarity Indexes
of multiple wines present in the initial list of user prefer-
ences. Another scenario which could be observed in Figure
9 was that wine37 had a score of 4.7 in the initial list of user
preferences, whereas it had a score of 5.1 in the expanded
list. This was again due to the effect of wine37 being present
in the Wine-Wine Similarity Index of one of the wines in the
initial list. This resulted in its final score being greater than
its base score. There was also the case of wines being present
in the initial list and absent in the expanded list. This hap-
pened because other wines with higher scores rose up in the
ranking, and pushed them out. For example, this situation
happened to wine81 in Figure 9, in our example.

Figure 9: Cold start

5.5 Top k1, k2 Model
This model was a variant of Model 3, the simple content-

collaboration based methodology. We considered the top k1
user preferences and the associated top k2 wines with the
highest Wine-Wine Similarity Index scores. This results in a
total of k1 × k2 candidates as recommendations. This model
is based on the principle that the most similar wines(k2) to
the wines the user likes the most(k1) are the most suitable
recommendations. There can be another variation wherein
we consider threshold scores as our boundary, both in the
cases of user preferences, and wine-wine similarities.

6. RESULTS AND DISCUSSION
The results were generated from random user simulations,

since we did not have a comprehensive user purchase data
to work from. We had to create our own users and had to
tag them with certain wines that were of a particular type.
This was important because we didn’t have a lot of wine ex-
pertise to be able to distinguish between subtle differences
between two or more closely related wines. For example, if,
for a particular user who had tried only light red wines our

Algorithm 4: Cold start model

Input: wine-wine similarity and user-wine preference
lists

Output: list of recommended wines
// expanded-user-prefs = intermediate list

holding expanded user wine preferences

// intermed-list = intermediate list holding

wines, scores associated with them

1 foreach item in user-wine preference list for user do
2 put item into expanded-user-prefs
3 wine = item.wine
4 item-wine-score = item.wine-score
5 foreach sim-wine in wine-wine similarity list for

wine do
6 wine-score = item-wine-score ×

sim-wine.wine-score
7 if intermed-list does not contain sim-wine then
8 put <sim-wine, wine-score> into

intermed-list
9 end

10 else
// update wine score for sim-wine

11 intermed-list-sim-wine-score =
intermed-list-sim-wine-score + wine-score

12 end

13 end

14 end
15 put top ranked from intermed-list into

expanded-user-prefs
16 foreach item in expanded-user-prefs for user do
17 wine = item.wine
18 item-wine-score = item.wine-score
19 foreach sim-wine in wine-wine similarity list for

wine do
20 wine-score = item-wine-score ×

sim-wine.wine-score
21 if intermed-list does not contain sim-wine then
22 put <sim-wine, wine-score> into

intermed-list
23 end
24 else

// update wine score for sim-wine

25 intermed-list-sim-wine-score =
intermed-list-sim-wine-score + wine-score

26 end

27 end

28 end
29 put top ranked from intermed-list into list of

recommended wines

recommendation system returned a wine result which was
white, or strong, then we would be able to regard it as in-
correct. This meant that our tests were relatively simplistic
and non-exhaustive, which made our testing methodology
slightly biased. Situations in which the user had bought
more wines produced better results.

We created each of our models in a C++ software pro-
gram. We used our indexes that we generated in the pre-
vious stages. We chose recommendation basket sizes of 10,
15, and 20. We ran simulations for each of the five models,
for the user simulations and some users from the actual cus-
tomer purchase data that was provided. The metric we used

Algorithm 5: Top k1, k2 model

Input: user-wine preference and wine-wine similarity
lists

Output: list of recommended wines
// intermed-list = intermediate list holding

wines, scores associated with them

// top-k1-user-prefs = list containing top k1

user prefs

// top-k2-wine-similarities = list containing

top k2 most similar wines for a particular

wine

1 top-k1-user-prefs = top-k1(user-wine preference-list)
2 top-k2-wine-similarities = top-k2(wine-wine similarity

list)
3 foreach item in top-k1-user-prefs for user do
4 wine = item.wine
5 item-wine-score = item.wine-score
6 foreach sim-wine in top-k2-wine-similarities for

wine do
7 wine-score = item-wine-score ×

sim-wine.wine-score
8 if intermed-list does not contain sim-wine then
9 put <sim-wine, wine-score> into

intermed-list
10 end
11 else

// update wine score for sim-wine

12 intermed-list-sim-wine-score =
intermed-list-sim-wine-score + wine-score

13 end

14 end

15 end
16 put top ranked from intermed-list into list of

recommended wines

Figure 10: Top k1, k2 model. The threshold can also

be score based, and a threshold of 8.5 in the above figure

would give the same results.

to evaluate the results for each of the 5 models, for varying
basket sizes, was Root Mean Square(RMS). For example,
suppose useri likes subtle, sweet red wines. A simulation
run of one of our models, for a basket size of 10, returned 9
results which matched the user’s tastes and another result
for a strong, dry white wine.

Precision is defined as the fraction of the results that
match the user’s needs. In our case, the user’s particular

Figure 11: Evaluation of the 5 recommendation system

models.

wine preferences. In the above example, the precision was
calculated as 0.9. This was just one instance of the results,
and by running simulations for each of our different models
on varying basket sizes, for the different users, we got our
set of precision values. We applied the RMS equation to
obtain a generalized mean for each of the models, and for
varying basket sizes. In this manner, we obtained the results
of Figure 11. The RMS relation is given in Equation 13.

xrms =

r
x2

1 + x2
2 + . . . + x2

n

n
(13)

7. CONCLUSIONS AND FUTURE WORK
We found that the pure content method precision graph

drops, for increasing values of basket size. This is possibly
due to the fact that there are only a fixed number of results
that can be obtained from the content based method, and
as the basket size increases, the degree of precision falls off.
The pure collaboration based method also works in a similar
way, but returns more far-fetched results which it gets from
the users that are more similar to the current user. Since
it tries to correlate wines from seemingly similar users, this
has a negative effect on larger basket sizes. The content
+ collaborative takes the best points from each of the two
previous models, and they cancel out the disadvantages. It
never runs short of recommendations to make, because its
results have a uniform scoring pattern in spite of increasing
basket size. As such, the results fall off, but the rate of
decrease is rather shallow, as demonstrated in Figure 11.

Cold start was the best performing model, possibly be-
cause it generated an expanded user preference list on which
the collaboration technique was applied. The fact that it
had a high number of candidate wines due to the expan-
sion, and the subsequent correlation introduced through the
collaboration technique ensured that its results increasingly
improved with larger basket size. The results for the top
k1, k2 model followed a similar pattern to the content +
collaboration based model. This was expected because this
model was just a variation of it, but, with a reduced number
of candidate wines. This affected its precision value for the
increasing basket size because it did not have enough wines
to meet the user’s needs.

We hope to improve the accuracy and performance of our
models in future implementations of our recommendation
system. One way of doing this, is to improve the quality of
each wine’s associated attributes. We could use an expanded
list of attributes, by consulting a glossary of relevant wine
tasting terminology[4]. We found that many foreign words
were present, and if these were translated into english, then
this would have greatly enhanced our term matching pro-
cess. For example, consider the following word equivalents:
rouge → red, blanc → white. Also, our models made exten-
sive use of various weight parameters, such as α, as described
in Section 4. We would like to perform analyses with dif-
ferent values of these weight parameters, and examine the
resulting effects. Finally, we would like to use other types of
recommendation system models. For example, we have con-
sidered a Prestige[9] or PageRank model, that re-ranks the
intermediate list. They use multiple iterations, which re-sort
the list each time, giving a higher level of refinement.

8. REFERENCES
[1] Y. Chuan, X. Jieping, and D. Xiaoyong.

Recommendation algorithm combining the user-based
classified regression and the item-based filtering. In
8th International Conference on Electronic Commerce,
Fredericton, Canada, 2006.

[2] P. Cremonesi, Y. Koren, and R. Turrin. Performance
of recommender algorithms on top-n recommendation
tasks. In ACM Recommender Systems, Barcelona,
Spain, 2010.

[3] E. H. Han and G. Karypis. Feature-based
recommendation system. In ACM Conference on
Information and Knowledge Management, Bremen,
Germany, 2005.

[4] A. Hawkins. A glossary of wine-tasting terminology.
http://zebra.sc.edu/smell/wine_glossary.html,
1995.

[5] H. Ma, I. King, and M. R. Lyu. Effective missing data
prediction for collaborative filtering. In 30th
International ACM SIGIR Conference, Amsterdam,
The Netherlands, 2007.

[6] S. Park, D. Pennock, O. Madani, N. Good, and
D. DeCoste. Naive filterbots for robust cold-start
recommendations. In 12th ACM International
Conference on Knowledge Discovery and Data Mining,
Philadephia, PA, 2006.

[7] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In 10th International World Wide Web
Conference, Hong Kong, China, 2001.

[8] S. Sen, J. Vig, and J. Riedl. Tagommenders:
Connecting users to items through tags. In 18th
International World Wide Web Conference, Madrid,
Spain, 2009.

[9] Y. Shi, M. Larson, and A. Hanjalic. Connecting with
the collective: Self-contained reranking for
collaborative recommendation. In ACM International
Workshop on Connected Multimedia, Firenze, Italy,
2010.

[10] E. Vozalis and K. G. Margaritis. Analysis of
recommender systems’ algorithms. Technical report,
Department of Applied Informatics, University of
Macedonia, Thessaloniki, Greece, 2003.

