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Manifold Learning In Streams Motivation

Manifold Learning In Streams
Motivation

Understanding the structure of multidimensional patterns is of
primary importance.
Processing data streams, potentially in�nite requires adequate
summarization which can handle inherent constraints and
approximate characteristics well.
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Manifold Learning In Streams Challenges Involved

Manifold Learning In Streams
Challenges Involved

Curse of dimensionality combined with lack of scalability of
algorithms makes data analysis di�cult/inadequate.
Cannot use entire streams as training data motivates
Out-of-Sample Extension (OOSE) techniques.
Need to formalize “collective error” in NLSDR methods and
strategies to quantify it.
Dealing with intersecting manifolds.
Need to handle concept dri� i.e. changes in stream properties.
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Thesis Thesis Contributions

Thesis
Thesis Contributions

Formulate a generalized Out-of-Sample Extension framework for
streaming NLSDR.
Provide algorithms which are speci�c instantiations of the above
generalized framework, for Isomap and LLE.
Provide theoretical proofs which support the basic operating
principles of framework.

Additionally, provide a novel Tangent Manifold clustering strategy to
deal with intersecting manifolds.
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Thesis Thesis Contributions In Detail

Thesis
Thesis Contributions In Detail

In particular,
Chapter 3: S-Isomap [1], which can compute low-dimensional
embeddings cheaply without a�ecting the quality signi�cantly.
Chapter 4: S-Isomap++ [2], which can deal with multimodal
and/or unevenly sampled distributions.
Chapter 5: GP-Isomap [3], which is able to detect concept dri�
and can embed streaming samples e�ectively.
Chapter 6: A Generalized Out-of-Sample Extension Framework for
streaming NLSDR [4] and subsequently discusses Streaming-LLE.
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Thesis Publications

Thesis
Publications

1 “Error metrics for learning reliable manifolds from streaming
data.”, Proceedings of the 2017 SDM. SIAM, 2017.

2 “S-Isomap++: Multi Manifold Learning from Streaming Data.”,
2017 IEEE International Conference on Big Data. IEEE, 2017.

3 “Learning manifolds from non-stationary streaming data.”, arXiv
preprint arXiv:1804.08833, 2018. (under submission at
ECML-PKDD 2018)

4 “A Generalized Out-of-Sample Extension Framework for
streaming NLSDR” (under preparation for TKDE 2018)
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Thesis Algorithmic Contributions

Thesis
Algorithmic Contributions

Isomap S-Isomap S-Isomap++ GP-Isomap
Scalable Stream
Processing 7 X X X

Handling Multiple/
Intersecting
Manifolds

7 7 X X

Handling
Non-stationary

Streams
7 7 7 X

Additionally,
Formulate techniques for generalized OOSE framework for
streaming NLSDR.
Propose streaming extensions for Local Linear Embedding (LLE).
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Thesis Theoretical Contributions

Thesis
Theoretical Contributions

Prove that a small initial batch is su�cient for reliable learning
of manifolds.
Show equivalence between GP-Isomap prediction and S-Isomap
prediction.
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Methodology A Generalized Framework For Multi-Manifold Learning

Methodology
A Generalized Framework For Multi-Manifold Learning
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Methodology A Generalized Framework For Multi-Manifold Learning

Methodology
A Generalized Framework For Multi-Manifold Learning

Input: Batch B, Stream S; Parameters ε, k, l, λ
Output: LDE YS
1: Partition B into clusters Ci=1,2...p.
2: Compute low dim. emb. ∀Ci=1,2...p using A.
3: Determine support ξs using Ci=1,2...p.
4: Compute {Ri, ti}i=1,2...p which mapsMi → U .
5:
6: For each s ∈ S
7: Using OOSA, project s toMi ∀i = 1, 2 . . .p.
8: Using {Ri, ti}i=1,2...p, map s→ U .
9: Embed s inMj where j← argmini |Ui(s)− µ(Ci,Ri, ti)|.
10: YS ← YS ∪ ys
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Methodology
A Generalized Non-parametric Framework For Multi-Manifold

Learning

Methodology
A Generalized Non-parametric Framework For Multi-Manifold Learning
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Methodology
A Generalized Non-parametric Framework For Multi-Manifold

Learning

Methodology
A Generalized Non-parametric Framework For Multi-Manifold Learning

Input: Batch B, Stream S; Parameters ε, k, l, λ, σt, ns
Output: LDE YS
1: Partition B into clusters Ci=1,2...p.
2: Compute low dim. emb. ∀Ci=1,2...p using A.
3: Estimate φGPi ∀Ci=1,2...p using ESTA.
4: Determine support ξs using Ci=1,2...p.
5: Compute {Ri, ti}i=1,2...p which mapsMi → U .
6:
7: For each s ∈ S
8: Using GPRA, compute µi,σi for s ∀i = 1, 2 . . .p.
9: j← argmini σi.
10: Embed s inMj if σj ≤ σt, otherwise add s to Su.
11: Re-run Batch Phase with B ∪ Su when Su ≥ ns.
12: YS ← YS ∪ ys
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Methodology S-Isomap++ - Speci�c Instantiation For Isomap

Methodology
S-Isomap++ - Speci�c Instantiation For Isomap

Use Isomap for learning low-dimensional embeddings for
Ci=1,2...p.
Out-of-Sample Extension performed for streaming samples s ∈ S
using Streaming-Isomap.
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Methodology Streaming-LLE - Speci�c Instantiation For LLE

Methodology
Streaming-LLE - Speci�c Instantiation For LLE

Use LLE for learning low-dimensional embeddings for Ci=1,2...p.
Out-of-Sample Extension performed for streaming samples s ∈ S
using OOSE-LLE.
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Methodology OOSE-LLE - Out-Of-Sample Extension For LLE

Methodology
OOSE-LLE - Out-Of-Sample Extension For LLE

Input: s, Ci, LDEi
Output: ys
1: ζs ← KNN(s, Ci)

2: w∗ ← argmin
w

∥∥∥∥∥(s− ∑
xj∈ζs

wjxj
)∥∥∥∥∥

2

3: return
( ∑
yj∈ζs

w∗j yj
)
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Experiments Datasets

Experiments
Datasets

Euler Isometric Swiss Roll - Synthetically generated dataset
consisting of four R2 Gaussian patches embedded into R3 using
a non-linear function ψ(·).
Gas Sensor Array Dataset (GSAD) - Benchmark dataset which
uses measurements from 16 chemical sensors used to
discriminate between 6 gases at various concentrations.
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Streaming-LLE Results

Streaming-LLE
Results - E�ect Of Changing k

Top Le�: k = 8, Top Right: k = 16, Bottom Le�: k = 24, Bottom Right: k = 32
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Streaming-LLE Results

Streaming-LLE
Results - E�ect Of Changing l

Top Le�: l = 1, Top Right: l = 2, Bottom Le�: l = 4, Bottom Right: l = 8
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Streaming-LLE Results

Streaming-LLE
Results - E�ect Of Changing λ

[Top Le�: λ = 0.005, Top Right: λ = 0.01, Bottom Le�: λ = 0.02, Bottom Right: λ = 0.04]
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Streaming-LLE Results

Streaming-LLE
Results - Comparison Between Streaming-LLE And S-Isomap++
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[Low-dimensional embedding uncovered by the Streaming-LLE algorithm on the Gas Sensor Array dataset. S-Isomap++ seems
to uncover embeddings whose manifolds have smooth surfaces, while Streaming-LLE seems to uncover individual manifolds
which are linear but disjoint and non-smooth.]
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GP-Isomap Handling Non-stationary Streams

GP-Isomap
Handling Non-stationary Streams

Motivation:
S-Isomap++ cannot detect and handle changes in the stream
distribution.
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GP-Isomap Motivation

GP-Isomap
Motivation

Fits a GP on
batch data.
Computes GP
predictions on
streaming
samples.
Uses GP variance
to identify
possible shi�s in
stream.
Subsequently,
re-trains batch to
handle novel
instances.
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GP-Isomap Methodology

GP-Isomap
Methodology

Uses Isomap for learning low-dimensional embeddings for
Ci=1,2...p.
For hyper-parameter estimation, uses low-dimensional
embeddings uncovered by Isomap and Geodesic Distance based
kernel.
For Gaussian Process (GP) regression, uses low-dimensional
embeddings uncovered by Isomap, Geodesic Distance based
kernel and GP speci�c estimated hyper-parameters.
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GP-Isomap Geodesic-Distance Based Kernel

GP-Isomap
Geodesic-Distance Based Kernel

The GP-Isomap algorithm uses a novel geodesic distance based
kernel function de�ned as:

k(yi, yj) = σ2s exp

(
−
bi,j
2`2
)

where bi,j is the ij
th entry of the normalized geodesic distance matrix

B, σ2s is the signal variance (whose value is �xed as 1.0 in this work)
and ` is the length scale hyper-parameter.
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GP-Isomap Geodesic-Distance Based Kernel

GP-Isomap
Geodesic-Distance Based Kernel

The novel kernel is positive-de�nite (PD) as demonstrated below :-

K
(
x, y
)

= I+
d∑
i=1

[
exp

(
− λi
2`2
)
− 1
]
qiqTi = I+ QΛ̃QT

where Λ̃ =


[

exp
(
− λ1
2`2
)
− 1
]

0 0

0 . . . 0
0 0

[
exp

(
− λd2`2

)
− 1
]
 and

{λi,qi}i=1...d are the eigenvalue/eigenvector pairs of B.
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GP-Isomap Results

GP-Isomap
Results

[Procrustes error (PE) between the ground truth with a) GP-Isomap (blue line) with the geodesic distance based kernel, b)
S-Isomap (dashed blue line with dots) and c) GP-Isomap (green line) using the Euclidean distance based kernel, for di�erent
fractions (f ) of data used in the batch B.]
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GP-Isomap Results

GP-Isomap
Results

[Using variance to detect concept-dri� using the four patches dataset.Initially, when stream consists of samples generated
from known modes, variance is low, later when samples from an unrecognized mode appear, variance shoots up. We can also
observe the three variance “bands” above corresponding to the variance levels of the three modes for t ≤ 3000.]

Suchismit Mahapatra Scalable Nonlinear Spectral Dimensionality Reduction Methods For Streaming DataDissertation Defense 27 / 36



GP-Isomap Results

GP-Isomap
Results

[Using variance to identify concept-dri� for the GSAD dataset. The introduction of points from an unknown mode in the stream
results in variance increasing drastically as demonstrated by the mean (red line). The spread of variances for points from
known modes (t - 2000) is also smaller, compared to the spread for the points from the unknown mode (t % 2000).]
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S-Isomap Theoretical Results

S-Isomap
Theoretical Results

Theorem
Given uniformly sampled, unimodal distribution from which the batch
dataset B for S-Isomap is derived from, ∃n0 i.e. for n ≥ n0 the
Procrustes Error εProc

(
τB, τ ISO

)
between τB = φ−1

(
B
)
, the true

underlying representation and τ ISO= φ̂
−1(B), the embedding

uncovered by Isomap is small (εProc ≈ 0) i.e. the batch phase of the
S-Isomap algorithm converges.

Proof.
[Bernstein et al.] showed that a data set B having samples drawn
from a Poisson distribution with density function α satisfying
certain conditions, leads to

(1− λ1) ≤
dG(x, y)

dM(x, y)
≤ (1+ λ2)

[
∀x, y ∈ B

]
(1)
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S-Isomap Theoretical Results

S-Isomap
Theoretical Results

Proof.
D̃G= D̃M + ∆D̃M
Equating the expected sample size (nα̃) from a �xed distribution
to the density function α, we get the threshold for n0 i.e.

n0 = (1/α̃) log(V/(µṼ(δ/4)))/Ṽ(δ/2)

= (1/α̃)
[

log(V/µηd(λ2ε/16)d)
]
/ηd(λ2ε/8)d

(2)

where D̃M and D̃G represent the squared distance matrix
corresponding to dM(x, y) and dG(x, y) respectively, α̃ is the
probability of selecting a sample from B, V = volume of the manifold,
Ṽ(r) = ηdrd and ηd = volume of unit ball in Rd.
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S-Isomap Theoretical Results

S-Isomap
Theoretical Results

Proof.
[Sibson et al] demonstrated the robustness of MDS to small
perturbations i.e. let F perturb the true squared-distance matrix
B to B+ ∆B = B+ εF. PE between the embeddings uncovered by

MDS for B and B+ ∆B equates to ε2

4
∑
j,k

eTj Fek
2

λj+λk
≈ 0 for small

perturbation matrix F.
Substituting ε = 1 and replacing B with D̃M and ∆B with ∆D̃M
above, we get our result, since the entries of ∆D̃M are very small
i.e. {0 ≤ ∆D̃M(i, j) ≤ λ2}1≤i,j≤n where λ = max(λ1, λ2) for small λ1,
λ2.
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GP-Isomap Theoretical Results

GP-Isomap
Theoretical Results

Theorem
The prediction τGP of GP-Isomap is equivalent to the prediction τ ISO
of S-Isomap upto translation, rotation and scaling factors i.e. the
Procrustes Error εProc

(
τGP, τ ISO

)
between τGP and τ ISO is 0.

Proof.
Want to show εProc

(
τGP, τ ISO

)
= 0.

Subsequently, demonstrate that τGP is a scaled, translated,
rotated version of τ ISO.
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GP-Isomap Theoretical Results

GP-Isomap
Theoretical Results

Proof.
The 1st dimension for S-Isomap prediction can be written as

τ ISO1 =

√
λ1
2

n∑
i=1

q1,i
(
γ − g2i,n+1

)
(3)

The 1st dimension for GP-Isomap prediction can be written as

τGP1 =
α
√
λ1

1+αc1

n∑
i=1

q1,i
(
1−

g2i,n+1
2`2

)
(4)

where γ =
( 1
n
∑
j
g2i,j
)
, λ1 = 1st eigenvalue of B and q1 the

corresponding eigenvector, α = 1(
1+σn2

) and c1 =
[

exp
(
− λ1
2`2
)
− 1
]
.
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GP-Isomap Theoretical Results

GP-Isomap
Theoretical Results

Proof.
(3) is a scaled, translated, rotated version of (4).
Similarly, for each of the dimensions (1 ≤ i ≤ d), τGPi can be
shown to be a scaled, translated, rotated version of τ ISOi.
We consolidate these individual scaling, translation and rotation
factors together into single collective factors and demonstrate
the required result.

�
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Thesis Conclusions & Future Work

Thesis
Conclusions & Future Work

Can work with only a fraction of the data and still be able to
learn, while processing the remaining data “cheaply”.
Demonstrate theoretically that a “point of transition” exists for
certain algorithms.
Provide error metrics to practically identify them.
Formulate a generalized OOSE framework for streaming NLSDR.
Including other NLSDR methods as part of this framework and
understanding relationships with other members of the NLDR
family are future research directions.
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