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Abstract

High-dimensional data is inherently difficult to explore and analyze owing to
the ”curse of dimensionality” that render many statistical and Machine Learn-
ing (ML) techniques (e.g. clustering, classification, model fitting, etc.) inad-
equate. In this context, nonlinear spectral dimensionality reduction (NLSDR)
methods have proved to be an indispensable tool. However, standard NLSDR
methods, e.g. Isomap [74] or Locally Linear Embedding (LLE) [60], have been
designed for off-line or batch processing. Consequently, they are computation-
ally too expensive or impractical in cases where dimensionality reduction must
be applied on a data stream. Processing data streams efficiently using stan-
dard approaches is also challenging in general, given streams require real-time
processing and cannot be stored permanently. Any form of analysis, including
NLSDR and/or detecting concept-drift requires adequate summarization which
can deal with the inherent constraints and that can approximate the character-
istics of the stream well. In spite of advances in hardware and development
of novel processing frameworks, the issue of scalability of ML algorithms still
remains. The scalability of an algorithm is measured via how its performance
gets affected as the problem size increases. Scalable algorithms should be able
to work with any amount of data without consuming ever growing amounts of
storage memory and computations. The challenge is often to find a trade-off
between quality and processing time i.e. getting “good enough” solutions as
“fast” or “efficiently” as possible.

In this thesis, I propose a generalized framework for streaming NLSDR which
can work with different manifold learning approaches e.g. Isomap and LLE to
be able to deal effectively with data streams, having underlying distributions
which can be multi-modal in nature and be non-uniformally sampled as well. In
particular, I developed streaming Isomap or S-Isomap [65], an algorithm which
via a clever approximation is able to scalably reduce the computation cost of
discovering the low-dimensional embedding at a fraction of the cost without
affecting the quality significantly. However, S-Isomap [65] was limited in this

xvi



scope i.e. it could only deal with unimodal, uniformly sampled distributions.
Hence arose the need for S-Isomap++ [50], which ameliorated the flaws of its
predecessor in being able to deal with multimodal and/or unevenly sampled
distributions.

However, S-Isomap++ [50] can only detect manifolds which it encounters in
its batch learning phase and not those which it might encounter in the streaming
phase. Thus, S-Isomap++ [50] ceases to “learn” and evolve to be able to limit
the embedding error for points in the data stream, which motivated the need
for GP-Isomap [51], which via a novel positive-definite geodesic-distance based
kernel, and using Gaussian Processes to measure variance, is able to detect
concept-drift i.e. distinguish among different manifolds and embed streaming
samples effectively. Subsequently, I developed the streaming LLE algorithm, for
processing streams using LLE as well as discuss a generalized Out-of-Sample
Extension methodology for streaming NLSDR, applicable for different mani-
fold learning algorithms. Lastly, I provide theoretical bounds for S-Isomap and
GP-Isomap as part of this work.

xvii



Chapter 1
Introduction

Ability to analyze massive streams of data is a valuable aspect of any mod-

ern data science pipeline. This is important in many contexts, such as high-

performance high-fidelity numerical simulations [18], high-resolution scientific

instrumentation (microscopes, DNA sequencers, etc.) [61] and even Internet of
Things [10] where a huge number of devices are currently connected to the In-

ternet and feeding a variety of data streams. Such data sources typically moni-

tor or measure complex system behaviors, using a large number of parameters.

Dimensionality reduction methods [77] are typically used to map the resulting

high-dimensional data into a smaller, manageable space, while losing as little

information as possible. The underlying assumption is that the dataset can be

well-described by a set of features, whose number is significantly smaller than

the dimension of the original. Thus aim is to find this set of features, thereby

recovering the true structure of the data.

Historically, the preferred approach for dimensionality reduction was the

linear one. Perhaps the simplest being feature elimination [38]. In feature elimi-

nation, attempts are made to isolate the features relevant to the problem, subse-

quent to which the “non-relevant” features are removed. However, the assump-

tion that only a few of the features are relevant is a strong one and is usually

incorrect. Yet another common approach performs linear projection of the data

onto a subspace of lower dimensionality. In this approach, the assumption is
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Figure 1.1: General nonlinear spectral dimensionality reduction workflow.

that data is usually controlled by a few underlying latent variables which are

related via a linear mapping. Common techniques include Principal Compo-

nent Analysis (PCA) [31], Multidimensional Scaling (MDS) [41], Factor Analy-

sis [52] and Independent Component Analysis (ICA) [33] among others. While

these techniques are largely successful, the assumption that a linear projection

describes the data well is incorrect for many scenarios. In many settings, es-

pecially when dealing with complex scientific and natural phenomenon, when

the data usually lies on a nonlinear manifold, Nonlinear Spectral Dimension-

ality Reduction (NLSDR) methods are more appropriate. In practical terms,

NLSDR effectively brings the original data into a more human-intuitive low

dimensional space that enables visualization and makes quantitative and qual-

itative analysis of nonlinear processes possible.

1.1 Nonlinear Spectral Dimensionality Reduction

In the most general terms, the NLSDR problem can be posed as follows. Given

a data matrix X = [x1, x2, . . . , xn]>, such that each xi ∈ RD, the task is to find

a corresponding low-dimensional representation, yi ∈ Rd, for each xi, where

d � D. We assume that there exists a function φ : Rd → RD that maps each

data sample yi ∈ Rd to xi ∈ RD. The goal of NLSDR is to learn the inverse

mapping, φ−1, that can be used to map high-dimensional xi to low-dimensional

yi, i.e. yi = φ−1(xi).

However NLSDR techniques come at a cost; most existing NLSDR methods

have a computational complexity of O(n3), n being the size of the data. The

issue is further exacerbated when the data is streaming, where obtaining exact

solution at every step of the stream is computationally infeasible. While ada-

patations of existing NLSDR methods, such as Isomap [74] and LLE [60], have

been proposed for handling data streams [40, 43], such methods, which typi-
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cally rely on incremental updates of the underlying solution, do not scale well

to massive streams.

Typically, NLSDR techniques are used as learning methods for discovering

the underlying low-dimensional structure from samples from high-dimensional

data. Existing techniques typically exploit either the global (Isomap, Minimum

Volume Embedding [83]) or local (LLE, Laplacian Eigenmaps [4]) properties of

the manifold to map each high-dimensional point xi ∈ RD to its correspond-

ing low-dimensional embedding, yi ∈ Rd. They are used as a generic nonlin-

ear, non-parametric technique to approximate probability distributions in high-

dimensional spaces.

Most existing NLSDR techniques, perform a similar series of data transfor-

mations as shown in Figure 1.1. First, a neighborhood graph is constructed,

where each node of the graph is connected to its k nearest neighbors. This in-

volves computing O(n2) pairwise distance values. Next, a feature matrix is

computed from this neighborhood graph, which encodes properties of the data

that should be preserved during dimensionality reduction. For example, in the

Isomap formulation, the feature matrix stores shortest paths between each pair

of points in the neighborhood graph, which is an approximation of the actual

geodesic distance between the points. The cost to compute the feature matrix

generally varies in the range O(n) and O(n3). To obtain the low representa-

tion of the input data, the feature matrix is factorized and the first d eigen vec-

tors/values form the output Y. This step has a O(n3) cost.

When used on data streams, NLSDR methods typically have to recompute

the entire manifold for every new streaming data point, which is computation-

ally expensive. In such scenarios, there is the need for incremental techniques

(Out-of-Sample Extension technique [43]), which can process the new streaming

points “cheaply”, compared to the traditional batch techniques without affect-

ing the quality of the embedding significantly.

Various NLSDR techniques have been successfully applied in many critical

applications ranging from advanced multimedia and scientific imagery analy-

sis [32, 47, 55, 73, 75, 58], through molecular modeling [78] to computational

biology [46, 61], and they are among the most fundamental methods for both

data preprocessing and analytics [45, 72]. However, many nonlinear processes
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Figure 1.2: Topology of high-dimensional, massive datasets.

of interest that could be studied via NLSDR produce high volume and high

velocity data that exceeds capability of the existing NLSDR methods. This is

because these techniques scale poorly with the number of available data points

and dimensions, and are primarily tailored for batch processing [77]. In Fig. 1.2,

we summarized properties of several representative data collections to which

NLSDR is directly applicable. These data sets typically consist of millions of

points in hundreds and thousands of dimensions. By contrast, the largest data

sets analyzed by classic NLSDR approaches usually do not exceed a few thou-

sands points [32, 39, 46, 53]. The scalability challenges behind NLSDR have

been recognized by the research community [72]. Consequently, several approx-

imation techniques [22, 42, 43, 73] and parallel computing approaches [2, 8, 13]

have been proposed. These, however, remain computationally challenging, ad-

dress only some NLSDR techniques, and lack a systematic and generalizable

approach that would be applicable to a broader spectrum of NLSDR methods.

1.2 Thesis Outline

The remaining of the proposal is structured as follows. In each of these chap-

ters, the content is arranged in sections with introduction, description of the

methodology, experiments and results, related work, discussion and conclusion

as applicable. In chapter 3, I present S-Isomap [65], an Out-of-Sample Extension

algorithm which can adequately map streaming data after NLSDR is performed
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on an initial batch dataset. However, S-Isomap could only handle unimodal,

uniformly sampled distributions. Hence arose the need for S-Isomap++ [50],

which is presented in chapter 4. S-Isomap++ [50] ameliorated the flaws of its

predecessor in being to deal with multimodal and/or unevenly sampled dis-

tributions. However, S-Isomap++ could only detect manifolds encountered in

its batch learning phase and not those which it might encounter subsequently

i.e. S-Isomap++ ceases to learn and evolve to be able to adequately map the data

stream, which motivated the need for GP-Isomap [51], which is presented in

chapter 5. GP-Isomap [51] via a novel geodesic-distance based kernel, and us-

ing Gaussian Processes, is able to detect concept-drift i.e. distinguish between

different manifolds in the streaming data. Subsequently in chapter 6, I discuss

a generalized Out-of-Sample Extension framework for streaming NLSDR, ap-

plicable for different manifold learning algorithms as well as present a specific

instantiation of the framework, the Streaming-LLE algorithm, for stream pro-

cessing using LLE. In chapter 7, I conclude this thesis with a brief discussion

and talk about possible future research directions for the current line of work.



Chapter 2
Background

2.1 Definition of a Manifold

Mathematically, a manifold M is defined as a metric space with the following

property: if x ∈ M, then there exists some neighborhood U of x and ∃n such

that U is homeomorphic to Rn [70].

The global structure of the high-dimensional ambient space can be more

complicated. Usually manifolds are embedded in high-dimensional spaces, but

the intrinsic dimensionality is typically low due to fewer degrees of freedom in

the underlying data generating process.

2.2 Why Manifold Learning for Nonlinear Dimen-

sionality Reduction ?

Nonlinear Dimensionality Reduction (NLDR) techniques can be broadly divided

into two main categories :-

• Approaches motivated by the geometry/topology of data i.e. Isomap [74],

LLE [60], LTSA [90]

• Approaches based on Deep learning i.e. Autoencoders and its variants [62,

29, 28, 5, 37, 59]
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Figure 2.1: Real-world data generally lies near multiple manifolds and is usually
separated by regions of low density.

The former category of methods exploit geometric/topological properties of

the underlying manifold due to which their outputs are easier to understand.

On the other hand, autoencoder-based approaches are not readily interpretable

given that the relationship between the inputs and outputs is not transparent.

Once the topological property has been defined, the former set of methods try to

preserve it and due of this they have fewer free parameters. For auto-encoder

based methods, hyper-parameter tuning and network design are challenging

since they typically have a large number of parameters.

At a primordial level, autoencoder-based approaches do not make any as-

sumptions regarding the mapping function1 φ−1 they are trying to learn. From

a theoretical perspective, the complexity of functions that are learnable by these

networks increases exponentially with the depth of the network architecture.

While this lack of bias might seem appealing however there are drawbacks

to this as well. Local minima can severely affect these approaches since they

depend a lot on the architecture as well as choice of hyper-parameters used.

1Assuming an underlying low-dimensional ground truth which gets mapped to higher di-
mensional real-world datasets via nonlinearφ. φ−1 refers to the “dimension-reducing” function
which does the inverse mapping. Refer to Sections 3.3.1 and 6.1 for additional discussions.
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The expressiveness prevalent in neural networks can also lead them to overfit if

used without adequate regularization. These methods generally require a large

amount of data to train as well as have long training periods. On the other hand,

approaches in the former category make “reasonable” assumptions about lo-

cal/global neighborhood relationships prevalent in the data which makes them

more “biased” and hence less expressive. However it also makes it more easier

for them to learn the mapping function as well as the improves the interpretabil-

ity of the resultant embeddings uncovered. The issue of lack of scalability of

certain algorithms in this family is adequately handled by the Out-of-Sample

Extension based approaches specific to them. Consequently the time it takes for

model learning as well as for stream processing is short.

We note here that it is possible to process data streams using autoencoder-

based approaches. However since data streams can be potentially infinite, we

cannot possibly hope to use entire data streams as training data for these neural

networks and consequently, issues like concept-drift can severely dent the quality

of embeddings uncovered for the test data. However, autoencoder-based meth-

ods would be useful in situations where the geometric/topological assumptions

about the manifold do not hold. In this work, we assume that these assumptions

in general hold and the results of our proposed approaches on several synthetic

and real benchmark data sets demonstrate that this assumption is not unrealis-

tic. Apart from the approaches mentioned, there are other techniques, for exam-

ple, t-SNE [49] which falls somewhere in between, however such methods are

an exception. Our discussion here was primarily motivated to weigh the pros

and cons of the two main NLDR approaches. We note here that Kernel PCA

belongs to the former category, given MDS which Isomap uses internally was

shown to be a form of Kernel PCA [84].

We demonstrate results for the state-of-the-art t-SNE algorithm on the Euler
Isometric Swiss Roll data set in Chapter 4 (see Figure 4.2), given its popularity for

the visualization of high-dimensional datasets particularly in scenarios when

the underlying manifold dimensionality (d) is ≤ 3. Even though t-SNE is not a

“streaming” algorithm as such, our motivation was to demonstrate its capability

in handling multiple manifolds. We show that t-SNE does not quite capture the

low-dimensional structure of the underlying manifold in our experiments.
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2.3 Quality of Embedding

Given the low-dimensional embedding by a NLSDR algorithm, we need to be

able to evaluate how good is the uncovered representation so as to be able to

utilize the embedding. If the quality of the embedding is poor, one cannot infer

that the embedding is indeed a parametrization of the high-dimensional input.

Moreover, if there is no way to estimate the quality of the uncovered embed-

ding, we would not be able to compare the representations found by different

algorithms. Finally, knowing the quality of embedding can be useful while pa-

rameter selection/optimization involved by the NLSDR algorithm.

A variety of embedding quality metrics [79, 11, 23] have been suggested,

however for this work we use the Procrustes analysis, which is widely used for

shape analysis [17] given its applicability to our problem. The idea behind Pro-

crustes analysis is to align two matrices, A and B, by finding the optimal trans-

lation t, rotation R, and scaling s that minimizes the Frobenius norm between

the two aligned matrices. In Section 3.3, we discuss more on this as well as sug-

gest a new measure of embedding quality, the Reference Sample method which

is applicable in scenarios wherein we do not have the latent ground truth to

compare against.

2.4 Isomap

In this section, we define the Isomap algorithm given its centrality to this thesis.

In our approach, we focus on Isomap because of its broad adoption in scientific

computing and bio-medical research, including fMRI analysis [75], clustering

of oncology data [54], genes and proteins expression profiling [44], modeling of

spatio-temporal relationships in data [36], and many others.

Isomap provides a simple and elegant way to estimate the intrinsic geome-

try of the manifold based on the local neighborhood of different points on the

manifold. Unfortunately, its high computational complexity means it is too ex-

pensive to use on any but relatively small data sets, and it is not suited for

stream processing. Consequently, there is a significant demand for an Isomap

variant that would be capable to learn a robust manifold from high-throughput
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Figure 2.2: Illustration of Isomap on the S-Curve dataset. The goal of Isomap is
to preserve the intrinsic geometry of the data.

data streams.

The goal of the Isomap algorithm is to preserve the intrinsic geometry of

the data, as captured by the geodesic distances (i.e. the length of the short-

est path on the manifold) between all pairs of data points. The geodesic dis-

tance between close points is approximated by the Euclidian distance, while

the geodesic distance between faraway points is approximated by adding up a

sequence of short hops between neighboring points. Note that this method at-

tempts to preserve distances between both faraway and neighboring points, i.e.

it is global.

The algorithm consists of three steps:

1. Construct the neighborhood graph by assigning to each data instance its

nearest neighbors.

2. Compute shortest paths on the neighborhood graph to create the Geodesic

Distance matrix.

3. Construct an embedding of the data in Rd by applying classical MDS to

the Geodesic Distance matrix.

The Isomap algorithm, being a global NLSDR technique should ideally pro-

vide a more faithful representation and preserve geometry irrespective of scale

i.e. map data samples which are close in the manifold to points which are close

in the low-dimensional embedding and similarly for distant samples. However,

it struggles when dealing with multi-modal and non-uniform distributions.
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NLSDR techniques, irrespective of whether they are global or local, require

an appropriate choice of the neighborhood size (k) to define their local neigh-

borhood to perform appropriately. More specifically, a small neighborhood size

might not to capture sufficient information about the manifold geometry, more

so when it is smaller than the intrinsic dimensionality of the manifold. A large

neighborhood size could lead to issues i.e. short-circuiting when distant, far-off

get included in the local neighborhood and corrupt the same. Idiosyncrasies

i.e. curvature and uneven sampling in different regions of the manifold make

choosing the problem of choosing the local neighborhood size particularly dif-

ficult. The Isomap algorithm is also not immune to the above. When the sam-

pling or distribution of data is multi-modal and non-uniform, we are forced to

choose a large k value so that we can formulate the Geodesic distance matrix

for all the data points, which would enable the Isomap algorithm to perform di-

mensionality reduction. In such scenarios, short-circuiting results in improper

embeddings uncovered by Isomap, which typically needs smaller values of k to

appropriately represent the local neighborhood.

This particular issue can be seen in Figure 4.1 where both the M-Isomap [20]

and S-Isomap++ algorithms can deal with individual manifolds well compared

to Isomap which severely deforms the individual clusters, which are R2 Gaus-

sian distributions mapped to R3 via the Isometric technique suggested by Schoen-

eman et al. [65]. It should also be noted that whereas both the M-Isomap and

S-Isomap++ algorithms required small values of k i.e. k = 8 to operate, Isomap

needed values of k ≥ 500 to even work.

The convergence properties of Isomap were studied by Bernstein et al. [7]

who proved that under some assumptions based on the manifold and the sam-

pling density, the estimated distances converge to the real geodesic distances.

This result, together with the robustness of MDS to perturbations [67] assure

convergence of Isomap when the assumptions are fulfilled.

2.5 LLE

The LLE algorithm, being a local NLSDR technique, is primarily concerned with

preserving the local neighborhood relationships between points. It does this
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Figure 2.3: Illustration of Isomap on the Swiss Roll dataset.

Figure 2.4: Illustration of LLE on the S-Curve dataset.

by defining the neighborhood for all points by determining the nearest neigh-

bors for points and subsequently choosing an low-dimensional representation

which best preserves the locally linear relationships. Let X = {xi ∈ RD}i=1,2,...n

be samples belonging to a compact manifold M of intrinsic dimensionality d,

where d � D. LLE initially tries to represent each xi as a linear weighted com-

bination of the set of points defined using in its local neighborhood N (xi).

Subsequently, it tries to determine a set of low-dimensional representations

Y = {yi ∈ Rd}i=1,2,...n which preserves the different local relationships using

the same combinations of weights.

The LLE algorithm has three main steps :-

1. Define a local neighborhood for each xi ∈ X either using the ε-rule or the

K-rule.
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Figure 2.5: Illustration of LLE on the Swiss Roll dataset.

2. Determine w which minimizes Φ(w) =

∥∥∥∥∥(xi − ∑
xj∈N (xi)

wi,jxj
)∥∥∥∥∥

2

i.e.

w∗ = argmin
w

Φ(w)

such that ∀i ∈ {1, 2 . . . n}, ∑
j

wi,j = 1 and wi,j = 0 if xj /∈ N (xi).

3. Compute Y which can be best reconstructed by w∗ by minimizing Λ(y1, y2 . . . yn)

where Λ(y1, y2 . . . yn) =
n
∑

i=1

∥∥∥∥∥
(

yi − ∑
yj∈N (yi)

w∗i,jyj

)∥∥∥∥∥
2

.

The most computationally expensive part of the the LLE algorithm is the last

step i.e. minimization of Λ(y1, y2 . . . yn) which requires O(n2) operations.



Chapter 3
Streaming Isomap or S-Isomap

3.1 Introduction

In this chapter, we try to address the issue of computational costs of classic

NLSDR methods and propose an alternative solution that builds on the system-

atic study of errors in manifold learning. We first describe a protocol to cap-

ture a “collective error” of the Isomap method. Then, we show how this error

can be used to detect a transition point at which sufficient data has been accu-

mulated to describe a high quality manifold, and computationally lightweight

techniques can be used to efficiently map the remaining data in a stream. Our

specific contributions are as follows:

1. We formalize a notion of collective error in Isomap and describe different

strategies to quantify it using Procrustes analysis. We perform careful ex-

perimental study of the error behavior with respect to the available data

using synthetic as well as real-life benchmark data. We identify properties

of the error that can be used to detect when manifold becomes stable and

robust to incorporating new points.

2. We propose a new efficient algorithm to incorporate streamed data into a

stable Isomap manifold. The complexity of the algorithm depends only

on the size of the initial stable manifold and is independent of the stream

size. Thus, the algorithm is suitable for high-volume and high-throughput

stream processing.
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The remainder of this chapter is organized as follows. In Section 3.2, we pro-

vide preliminary information and high level overview of NLSDR methods. In

Section 3, we introduce our approach to quantify error in Isomap, and in Section

4 we report experimental results showing properties of our error measure. In

Section 5, we introduce our new efficient algorithm for Out-of-Sample Isomap

Extension. We close the chapter with a brief survey of related work in Section 6,

and concluding remarks in Section 7.

3.2 Preliminaries

If directly and naively applied on streaming data, NLSDR methods have to re-

compute the entire manifold each time a new point is extracted from a stream.

This quickly becomes computationally prohibitive but guarantees the best pos-

sible quality of the learned manifold given the data. To alleviate the compu-

tational problem, landmark or general Out-of-Sample Extension methods have

been proposed (see Section 3.6). These techniques however either neglect mani-

fold approximation error or remain computationally too expensive for practical

applications (for example, their complexity depends directly on the stream size).

Here, we propose a different strategy. Initially, we aggregate incoming data and

process it using the standard Isomap. At the same time, we trace the quality of

the resulting manifold with some computationally acceptable overhead. When

we detect that adding new points does not improve the quality of the discov-

ered manifold, i.e. manifold is stable, we drop the standard Isomap and proceed

with a faster approximate method that is sufficient to maintain the quality of the

manifold. Our approach requires two components that we describe in the fol-

lowing sections: a method to assess accuracy of the learned manifold, and an

efficient algorithm to assimilate the remaining points from a stream.

3.3 Proposed Approach to Isomap Error

To quantitatively assess the performance of Isomap in large-scale streaming ap-

plications we first need an error metric to determine the accuracy of the learned

manifold.
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Error in Isomap may arise due to several reasons, including incorrect pa-

rameter selection and noisy input data. Parameter selection error may be in-

troduced by a poor choice of neighborhood size, k, or selecting a sub-optimal

dimensionality d. Error due to input data can be attributed to noise, missing

or limited data entries, or a skewed, rather than uniform, sampling of the un-

derlying manifold. Finally, there could be the intrinsic error of Isomap itself,

for instance due to simplifying assumptions about manifold, limited numerical

precision, etc.

While error in Isomap has been discussed in prior work (see Section 3.6),

most of these studies have focused on one particular aspect of the error. We

are interested in understanding the collective error associated with Isomap as a

function of the size of the input data. Here we present metrics to measure this

error.

3.3.1 Error Definition

We assume that there exists a functionφ : Rd → RD that maps each data sample

yi ∈ Rd to xi ∈ RD. The goal of NLSDR is to learn the inverse mapping,

φ−1, that can be used to map high-dimensional xi to low-dimensional yi, i.e.

yi = φ−1(xi).

Let the approximate mapping learned by Isomap be denoted by the inverse

function φ̂−1. Let Y denote the data matrix containing the true low-dimensional

mapping for the samples in X, i.e., Y = [y1, y2, . . . , yn]> and Ŷ denote the matrix

with the approximate mapping, i.e. Ŷ = [φ̂−1(x1), φ̂−1(x2), . . . , φ̂−1(xn)]>.

To measure the error between the true representation and the Isomap in-

duced approximate representation, we leverage Procrustes analysis, widely used

for shape analysis [17]. The idea behind Procrustes analysis is to align two ma-

trices, A and B, by finding the optimal translation t, rotation R, and scaling s

that minimizes the Frobenius norm between the two aligned matrices, that is:

dProc(A, B) = min
R,t,s
‖sRB + t−A‖F. (3.1)

The above optimization problem has a closed form solution obtained by per-

forming Singular Value Decomposition of ABT [17].
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We use the Procrustes analysis to measure the quality of the manifold ap-

proximated by Isomap in two ways: 1) A direct method for comparison when

low-dimensional ground truth, Y, is available. 2) A reference-sample method

that can be used when ground truth is absent. The asymptotic behavior of this

method converges to that of the first approach.

3.3.1.1 Direct Procrustes Error

The first approach requires the ground truth reference Y for the low-dimensional

manifold. When both X and Y are known, the error εProc is measured using (3.1),

that is:

εProc = dProc(Y, Ŷ). (3.2)

3.3.1.2 Reference Sample Error

In the absence of low-dimensional ground truth we use a reference-sample method.

The reference-sample method works in the following way. Given X, we select

F ⊂ X, a reference set, and two equal sized sample sets R1, R2 ⊂ X. Next, we

create two data sets, D1 and D2, such that Di = F ∪ Ri for i = 1, 2.

An approximation φ̂−1
i is learned for each Di and error is computed as the

Procrustes error for the two learned approximations of the reference set F:

ε = εProc(φ̂
−1
1 (F), φ̂−1

2 (F)). (3.3)

As we increase the size of the sample sets R1 and R2 we expect the reference-

sample error in (3.3) to behave similar to the Procrustes error computed directly

as in (3.2). In fact, we empirically show that both errors have similar asymptotic

behavior on several data sets.

3.4 Experimental Results

We present several experiments on a variety of data sets to illustrate the behav-

ior of error using the metrics proposed in Section 3.3. This allows for better

understanding of the asymptotic behavior of error in Isomap, required by our
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Figure 3.1: Procrustes error decreases asymptotically as n increases.

strategy for data stream processing. In particular, our objective is to show that

the error converges after a certain number of samples are observed.

3.4.1 Test Data

The Swiss Roll data set is typically used for evaluating manifold learning algo-

rithms. Swiss Roll data is generated from 2-dimensional data, embedded into 3

dimensions using a nonlinear function. Specifically, we have Y ⊂ R2 where:

Y = {(t, r)|1 ≤ t ≤ 3, 0 ≤ r ≤ 1}. (3.4)

The common approach is to generate the 3-D Swiss Roll from Y through the

use of nonlinear functions of the form x̂(t) = αt · cos (βt), ŷ(t) = αt · sin (βt),

and ẑ = r. This is problematic due to the fact that x(t), y(t) are not isometric,

i.e. distances between points in Y are not preserved along the surface generated

in R3. We propose a new data set to rectify this issue, the Euler Isometric Swiss
Roll. The idea is to substitute the commonly used x̂(t), ŷ(t) with the equations

for the Euler Spiral:

x(t) =
∫ t

0
sin (s2)ds.

y(t) =
∫ t

0
cos (s2)ds.

The Euler spiral has the property that the curvature at any point is propor-
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Figure 3.2: The asymptotic behavior error for the Reference Sample method and
Procrustes Analysis is similar.

tional to the distance from the origin. This gives constant angular acceleration

along the curve thus ensuring that isometry is preserved.

In order to investigate our approach to error analysis in the absence of ground

truth, we consider two benchmark data sets: the MNIST handwritten digit

database and the Corel Image data set. The MNIST database is composed of

70000 normalized, 28×28 grayscale images of handwritten digits ‘0’ to ‘9’. Each

image is represented by a 784-dimensional vector resulting from the normal-

ized, grayscale image. Each of the ten digits has roughly 7000 samples. The

Corel Image data set consists of 68040 photo images from various categories.

Each image is represented using 57 features.

First we apply Isomap to samples of data from the Swiss Roll dataset. This

is to investigate the ability of Isomap to reconstruct the true low-dimensional

structure under the conditions of limited data and increasing data. The obtained

results are presented in Figure 3.1. Each experiment is performed 10 times and

the mean error over all trials is reported.

Figure 3.1 shows that initially for smaller amounts of data the error as for-

mulated in (3.2) is relatively high. As more data samples are used the error

first decreases rapidly and then begins to converge at approximately 1500 sam-

ples. This suggests that the approximation may be learned within some error

tolerance using 1500 points, and that additional data points contribute no sig-

nificant information. It is at this point that we wish to use more computationally

lightweight, approximate methods to process the remaining samples.
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Next, we consider the reference-sample method described in Section 3.3.

In applying our sampling method to the Swiss Roll data we accomplish two

goals. Like in the first experiment, we are able to investigate the quality of the

Isomap approximation as data availability increases. In addition, because we

have ground truth available, we are able to validate our observation that both

errors asymptotically converge, in the limit of increasing data.

In Figure 3.2, we present results for both approaches to error analysis. In the

reference-sample method we take reference set F with |F| =100. We start with

sample sets R1, R2 with 100 samples and increase their size by 100 samples at

each step. The error between D1 and D2 is computed as prescribed by (3.3). At

the same time, the error for D1 compared with ground truth coordinates (3.4) is

computed and plotted alongside the reference-sample error.

Having gained an understanding of the behavior of errors on synthetic data

with availability of ground truth we turn our attention to real-world data. As an

example we consider samples for single digits from the MNIST database and the

Corel Image data set. For each data set, we determine its intrinsic dimensionality

based on residual variance and then run the reference-sample method to obtain

the error plots for increasing sample size, as shown in Figure 3.3.

For each data set, we observe a similar behavior to that seen for both ap-

proaches when applied to the Swiss Roll. The error decreases rapidly with addi-

tional samples. As the size of the sample sets Ri approaches around 2000-2500

samples, the error begins to stabilize as both approximations become more ac-

curate. The conclusion we draw from this is that for sample of more than 2000

points, a reliable manifold can be learned using both R1 and R2, which results

in convergence of the error.

3.4.2 Theoretical bounds on the size of B

The threshold for the size for the batch dataset B i.e. |B| = n > n0 beyond

which the Procrustes Error converges (see Figure 3.1) for the synthetically gen-

erated Euler Isometric Swiss Roll for a single manifold setting is given in the Sec-
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Figure 3.3: Illustrating the stabilization of the learned manifold with increasing
data.

tion 3.8. Using the result, we have :

n > n0 = (
1
α̃
) log((

1
µ
)(

V
Ṽ(δ/4)

))(
1

Ṽ(δ/2)
)

To determine the theoretical threshold n0, we substitute1 the values of pa-

rameters α̃, the probability of selecting a sample from the fixed distribution p(y;

θ) as ≈ 1.0 and µ, the probability associated with the distances ratio bound as

≈ 1.0 and substitute parameter δ associated with the δ-sampling condition as

0.0903, which is estimated empirically. The value for ηd, the volume associated

1α̃ was chosen as 1.0 since all points from B are chosen in the experiment. µ was chosen as
1.0, given 0.0 ≤ µ ≤ 1.0 and thus any value chosen between 0.0 and 1.0 is reasonable. However
we note here that µ should be ideally chosen closer to 0.0. Setting µ ≈ 0.0 gives an even higher
theoretical threshold on n0, compared to the result shown in Table 3.1.
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with a unit ball in R3 is given by ≈ ηd = 4π
3 = 4.1888. The value for ( 1

Ṽ(δ/2)
)

is given by 1
ηd∗(δ/2)∗(δ/2)∗(δ/2) = 2593.8. The ratio ( V

Ṽ(δ/4)
) which is the number

of balls of radius (δ/4) needed to cover the volume of manifold V is estimated

empirically as ≈ 520. Thus the value of the theoretically estimated threshold

n0 comes to ≈ (log(520) ∗ 2593.8) ≈ 16221. The empirical value of threshold

n0 for a single Gaussian patch (see Figure 3.1) is ≈ 2100
4 = 550. The theoreti-

cally estimated threshold on n0 is significantly larger than the empirically ob-

served threshold on n0 in a single manifold setting for the Euler Isometric Swiss
Roll dataset. The theoretical prediction on n0 overestimates the empirically ob-

served n0 for this dataset i.e. we do not require a large B before the associated

Procrustes Error starts to converge.

Theoretical n0 Empirical n0
Swiss Roll 16221 550

Table 3.1: The theoretically estimated threshold n0 overestimates the empirically
observed threshold n0 in a single manifold setting for the Euler Isometric Swiss
Roll dataset.

3.5 Proposed Streaming Isomap Algorithm

To form a stable, well represented manifold, Isomap requires an adequate num-

ber of samples to learn the topology of the manifold. More samples can capture

the idiosyncrasies of the manifold surface better. However, our experimental

results in Section 3.5.3 suggest that there exists a transition point beyond which

the quality of the manifold embedding is good. This means that once the point

of transition is reached, instead of building the entire manifold in a batch fash-

ion, we can potentially employ a computationally less expensive procedure to

map the new samples arriving in the data stream. We demonstrate this result

theoretically in the Section 3.8. Based on this result, we propose an Out-of-

Sample Extension method called S-Isomap that can adequately predict the em-

bedding of incoming samples in an efficient manner. The algorithm avoids re-

computation of the entire geodesic distance matrix or its eigen decomposition,

both of which are O(n3). While other Out-of-Sample Extension techniques ex-



23

ist [6], we demonstrate in Section 3.5.2 that the proposed algorithm is signifi-

cantly more efficient.

Algorithm 1 STREAMING ISOMAP

Require: Gb, Xb, Yb, xs, k
Ensure: ys

1: kNN, kDist← KNN(xs, Xb, k)
2:
3: for 1 ≤ i ≤ n do
4: gi ←min1≤j≤k{kDistj + GbkNNj ,i

}
5: end for
6:
7: c← 1

2(ḡ · 1n − g− ¯̄Gb · 1n + Ḡb)
8: p← (Y>b Yb)

−1Y>b c
9: Ŷ← [Yb; p]

10: ys ← p− ¯̂Y
11: return ys

The algorithm assumes that a transition point has already been identified by

monitoring the Isomap error using methods discussed in Section 3.3. Let matrix

Xb ∈ Rn×D denote the batch of samples encountered in the stream before the

point of transition. From our previous experimental results we can assume that

n is relatively small compared to the remaining size of the stream. Let Xs ∈
Rm×D represent the remaining part of the input data stream. Furthermore, let

Gb ∈ Rn×n represent the geodesic distance matrix between the samples in Xb,

and let Yb ∈ Rn×d be the matrix containing the corresponding low-dimensional

representations of the samples in Xb.

3.5.1 Algorithm

Our proposed method is shown in Algorithm 1. The key assumption is that

because the manifold learned from Xb is stable, we do not have to recompute

the entire geodesic distance matrix each time a new point xs is added. Instead,

it is sufficient that we find the nearest neighbors of xs in Xb and use those to

approximate geodesic distance between xs and the remaining points in Xb. This

step is realized in lines 1-4. Here, kNN stores indexes of the nearest neigh-
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Figure 3.4: The results illustrate that the error due to streaming points is low as
well as similar asymptotic behavior.

bors of xs, kDist represents the corresponding distances, and gi is the approxi-

mate geodesic distance between xs and the i-th point in Xb. Given the updated

geodesic distances we can obtain the low-dimensional coordinates of xs using

transformations similar to [43]. Specifically, we match the inner product be-

tween ys and points in Yb to the computed geodesics. If we denote the mean

of entries of g by ḡ and the mean of all entries of Gb by ¯̄Gb, then our desired

inner product can be expressed by c as given in line 6. Here, we use 1n to rep-

resent a vector of n ones, and Ḡb to represent the vector of row means of Gb.

Then, by solving for ys, whose inner product with Yb is equal c, we obtain the

low-dimensional representation of xs (lines 7-9).

3.5.2 Analysis

For a single point xs ∈ Xs, the proposed S-Isomap algorithm takes O(nD) time

to compute kNN, O(nk) to compute c, and O(nd2) for the least-squares es-

timation in solving for ys, where n is the size of the batch Xb. Thus, its run-

time complexity is O(n(D + d2 + k)) per streaming point. If we consider the

cost of learning the initial manifold, the proposed S-Isomap algorithm requires

O(n3 + mn(D + d2 + k)) time to process a stream of size n + m. This is sig-

nificant because the cost of mapping a new sample depends only on the batch

size n and parameters D, d and k. Since these are very small compared to the

entire stream size, the resulting computational savings are significant. Conse-
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quently, the algorithm is well suited for high-throughput streams. In contrast,

the complexity of the incremental Isomap [43], which is the other method de-

signed for streams, scales quadratically with the size of the stream, and it can be

O(iD + i2 log(i) + i2k) when inserting i-th sample from the stream if no initial

batch is available, or O(n2 log(n) + n2k) when Xb is given.

The space complexity of our algorithm is dominated by the termsO(n2) and

O(nd) due to the geodesic distance matrix, Gb, and the low-dimensional repre-

sentation of the batch samples, Yb. Thus, the space requirement does not grow

with the size of the stream, which makes the algorithm appealing for handling

high-volume streams.
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Figure 3.5: The results illustrate that the error due to streaming points is very
low, as well as the asymptotic behavior is almost the same.
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Figure 3.6: Timing results for our method compared to Isomap (horizontal ref-
erence line on top) which demonstrate the performance gain achieved.
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Figure 3.7: Timing results for S-Isomap compared to Isomap for fixed batch size
which demonstrate the performance gain achieved.

3.5.3 Experimental Results

To validate the proposed S-Isomap algorithm we perform a set of experiments

to asses how accurately and efficiently it maps samples in a stream to a manifold

learned from a fixed sized batch.

In the first set of experiments, we measure the error in the mapping ob-

tained using Algorithm 1 and compare it with the error in the mapping from

using standard Isomap algorithm. Using a data set X of size n + m, we learn a

manifold using a batch of size n and then map the remaining m samples using

S-Isomap. The entire mapping is compared to the ground truth using the Pro-

crustes error. Figure 3.4 shows the results for the Isometric Swiss Roll data with

n + m = 10000. Similar results are shown for the other data sets in Figure 3.5.
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For the other data sets, we use the mapping obtained by applying Isomap on

full data as the ground truth. The results show that while for smaller samples

the error is high, the error stabilizes to a low value after the point of transi-

tion. The error closely tracks the error for only the batch portion of the data set.

This indicates that beyond the point of transition, the mapping obtained using

S-Isomap is as accurate as that obtained from the standard Isomap.

To assess the computational efficiency of the S-Isomap algorithm, we show

the time taken by S-Isomap (including the time for Isomap on the batch and S-

Isomap on remaining stream) in Figure 3.6. The standard Isomap timing result

on all 10000 samples is shown as the horizontal baseline for reference. We note

that S-Isomap is able to map the samples in the stream much more efficiently

than Isomap on the entire data. Overall, Figures 3.4 and 3.6 show that the pro-

posed method is able to map samples in a stream in a highly efficient manner

without sacrificing the quality of the manifold.

To understand how S-Isomap would behave in a truly streaming mode we

conduct a second timing experiment. Here, we fix the size of the batch to the

estimated switching point (2000 for the Isometric Swiss Roll and then progres-

sively add samples to the stream and process it with S-Isomap. We measure

the cumulative time taken by S-Isomap to process the remainder of the stream,

for different sizes. Figure 3.7 shows the times compared with the runtime for

running Isomap on the aggregated batch and stream data. As previously, the

cumulative time of running S-Isomap scales linearly with the size of the stream.

This further confirms efficiency of the method.

3.6 Related Work

Given the high computational complexity of Isomap, variants of Isomap, such

as Landmark Isomap [68] and Out-of-Sample Extension techniques [6], have

been proposed as a computationally viable alternative. Both of these methods

either use a smaller set of landmark points or approximations to avoid perform-

ing the costly eigen decomposition on the n×n geodesic distance matrix, where

n is the number of points in the entire data set. However, they still require

computing the full geodesic distance matrix which is O(rn3), where r is the di-
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ameter of the embedded kNN graph. The Incremental Isomap algorithm [43]

avoids both eigen decomposition and a recreation of the geodesic distance ma-

trix. However, it requires updates to the geodesic distance matrix that incurs

a significant cost, as discussed in Section 3.5.2. Consequently, the method is

unsuitable for the streaming setting.

Errors in Isomap have been discussed in prior work [45], but those studies

have been typically in regards to selection of parameters. For example, Samko et

al. [63] proposed measuring a simple manifold embedding error for a range of k

to find the best choice of k. Similarly, an approach based on the k-edge disjoint

minimal spanning tree algorithm has been proposed to construct a neighbor-

hood graph with connectivity guarantees [88]. In the same spirit, several strate-

gies to assess intrinsic manifold dimension d are available [45]. However, to the

best of our knowledge there is no prior work in defining and understanding the

behavior of error that persists even with the selection of optimal parameters.

We address this error in taking an abstract view of Isomap, providing a proto-

col for measuring collective error, and understanding its behavior. In doing so

we identify the optimal point where we may switch from exact to lightweight

methods.

3.7 Conclusions

The error in Isomap approaches 0 as the density of sampled data tends to in-

finity. However, in practical settings, we can expect that after a certain level of

sampling the error does not change significantly. In other words, the learned

manifold becomes stable if the sample size reaches a certain threshold, under

the assumption of uniform sampling. In this chapter, we have presented the er-

ror metrics that can be used to empirically observe when the manifold becomes

stable. In particular, the reference-sample metric is appealing because it can

assess the manifold quality even when ground truth data is unavailable.

Equipped with the knowledge of the point of transition, we have presented

a streaming algorithm, S-Isomap, that can be used to efficiently map new data

samples to the stable manifold, instead of performing costly updates. The fact

that the cost of mapping new samples in S-Isomap depends only on the size
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of the initial batch used to generate the stable Isomap, and is independent of

the size of the stream itself, makes it a very powerful tool to process massive

streams of data.

3.8 Theoretical results related to S-Isomap

Proposition 1. Given an uniformly sampled, unimodal distribution from which the
random batch dataset B = {yi ∈ RD}i=1...n of the S-Isomap algorithm is derived from,
there exists a threshold ∃n0 such that when n ≥ n0, the Procrustes Error εProc

(
τB,

τ ISO
)

between τB = φ−1(B), the true underlying representation and τ ISO= φ̂−1(B),
the embedding uncovered by Isomap is small (εProc ≈ 0) i.e. the batch phase of the S-
Isomap algorithm converges.

Proof. Let us consider the following setting. Low-dimensional ground truth U

originally resides in a convex Rd Euclidean space. A random subset of sam-

ples X = {xi}i=1...n where X ⊆ U was picked and subsequently mapped via a

nonlinear function φ to B ∈ RD. In this generative model perspective, the mani-

fold learning algorithm i.e. Isomap attempts to learn the inverse mapping φ−1,

where the associated embedding error is the Procrustes Error εProc
(
τB, τ ISO

)
.

The proof essentially follows from [7] who showed that in a setting, where

given λ1, λ2, µ > 0 and for appropriately chosen ε > 0, as well as a dataset

Y = {yi}i=1...n sampled from a Poisson distribution with density function α

which satisfies the δ-sampling condition i.e.

α > log(V/(µṼ(δ/4)))/Ṽ(δ/2) (3.5)

wherein the ε-rule is used to construct a graph G on Y, the following holds with

probability at least (1−µ) for ∀x, y ∈ Y:

1− λ1 ≤
dG(x, y)
dM(x, y)

≤ 1 + λ2 (3.6)

where V is the volume of the manifold M and

Ṽ(r) = min
x∈M

Vol(Bx(r)) = ηdrd (3.7)
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is the volume of the smallest metric ball in M of radius r and δ > 0 is such that

δ = λ2ε/4 (3.8)

A similar result can be derived in the scenario where n points are sampled

independently from the fixed probability distribution p(y; θ), in which case we

have :

nα̃ = α (3.9)

where α̃ is the probability of selecting a sample from p(y; θ).

Using (3.7), (3.8) and (3.9) in (3.5), we have :

nα̃ > log(V/(µṼ(δ/4)))/Ṽ(δ/2)

=
[

log(V/µηd(λ2ε/16)d)
]
/ηd(λ2ε/8)d

(3.10)

n > (1/α̃)
[

log(V/µηd(λ2ε/16)d)
]
/ηd(λ2ε/8)d

= n0
(3.11)

where n0 = (1/α̃)
[

log(V/µηd(λ2ε/16)d)
]
/ηd(λ2ε/8)d, is the condition which

ensures that (3.6) is satisfied.

Thus we have derived an adequate threshold for the size of the batch dataset

B which ensures (3.11) is satisfied for the ε-rule. We can derive a similar thresh-

old for the K-rule, observing that there is a direct one-to-one mapping between

K and ε.

To complete the proof, we observe that (3.6) implies that dG(x, y), the graph

based distance between points x, y ∈ G is a perturbed version of dM(x, y),

the true Euclidean distance between points x and y in the low-dimensional Rd

space. Let D̃M and D̃G represent the squared distance matrix corresponding

to dM(x, y) and dG(x, y) respectively. Thus we have D̃G= D̃M + ∆D̃M where

∆D̃M= {d̃M(i, j)}1≤i,j≤n and d̃M(i, j) are bounded due to (3.6).

[67] demonstrated the robustness of MDS to small perturbations as follows.

Let F represent the zero-diagonal symmetric matrix which perturbs the true

squared distance matrix B to B + ∆B = B + εF. Then the Procrustes Error

between the embeddings uncovered by MDS for B and for B + ∆B is given by
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ε2

4 ∑
j,k

eT
j Fek

2

λj+λk
, which is very small for small entries {fi,j}1≤i,j≤n ∈ F, {ek(λk)}k=1...n

represent the eigenvectors (eigenvalues) of B and the double summation is over

pairs of (j, k) = 1, 2, . . . (n − 1) but excluding those pairs (j, k) wherein both

entries of which lie in the range (K + 1), (K + 2), . . . (n− 1), K =
n
∑

k=1
I(λk > 0)

and I is the indicator function. Substituting ε = 1 and replacing B with D̃M

and ∆B with ∆D̃M above, we get our result, since the entries of ∆D̃M are very

small i.e. {0 ≤ ∆D̃M(i, j) ≤ λ2}1≤i,j≤n where λ = max(λ1,λ2) for small λ1, λ2,

given the condition n > n0 is satisfied for (3.6). Thus we have that the embed-

ding uncovered by Isomap for a batch dataset B where |B| = n > n0 converges

asymptotically to their true embedding upto translation, rotation and scaling

factors. �

We additionally note that the asymptotic behavior of error for the Reference-

Sample method described in Section 3.3, matching that for the Procrustes Error,

for increasing size of the batch dataset is a corollary of Proposition 1 (refer Fig-

ure 3.2).



Chapter 4
S-Isomap++

4.1 Introduction

Most existing NLSDR methods have a computational complexity of O(n3), n

being the size of the data. The issue is further exacerbated when the data is

streaming, where obtaining exact solution at every step of the stream is compu-

tationally infeasible. While adapatations of existing NLSDR methods, such as

Isomap [74] and LLE [60], have been proposed for handling data streams [40,

43], such methods, which typically rely on incremental updates of the under-

lying solution, do not scale well to massive streams. In a recent work [65], a

two phase strategy has been proposed to adapt Isomap to streaming data. The

algorithm, called S-Isomap, operates on the core principle that a small batch of

data is necessary to learn the underlying small-dimensional manifold using an

exact and computationally expensive, but data-bounded, learning method. The

remainder of the stream may be mapped onto the learnt manifold using a rela-

tively inexpensive mapping procedure.

However, the above solution, and other related efforts to adapt NLSDR meth-

ods to streaming data [43], rely on the assumption that the data samples lie on a

single low-dimensional manifold. There have been limited attempts that allow

for multiple manifolds [20, 21], however, they assume that the manifolds do not

intersect in any ambient space. This is illustrated in Figures 4.1 and 4.3. In Fig-

ure 4.1, the synthetic data set in the top panel consists of four “patches” in 2-D
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(a) Original Data in 2-D
(b) Embedded Data (input) in 3-D

(c) Isomap Output (d) M-Isomap Output

(e) Proposed S-Isomap++
Output

Figure 4.1: Multi-manifold Swiss Roll data set. The 2-D samples in (a) are em-
bedded into 3-D in (b) via the Euler Isometric mapping technique [65]. The
reduction to 2-D is obtained using: (c). Isomap, (d). M-Isomap [20], and (e). the
proposed S-Isomap++ algorithm.

space which are embedded onto different regions of a 3-D Swiss Roll. Thus the

3-D patches data set maybe considered as the high-dimensional data set consist-

ing of samples from multiple manifolds. Direct application of Isomap, which

assumes that data comes from a single manifold, results in poor recreation of

the ground truth (Figure 4.1c). An existing method, M-Isomap [20], that explic-
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itly handles multiple manifolds, gives somewhat better results (Figure 4.1d). In

Figure 4.2 we demonstrate results of the state-of-the-art t-SNE algorithm on the

Swiss Roll dataset, given its popularity for the visualization of high-dimensional

datasets particularly in scenarios when the underlying manifold dimensional-

ity (d) is ≤ 3. The quality of the low-dimensional embedding results uncov-

ered is not good and in fact, we can observe a general lack of stability in the

results as well as “broken” manifolds. We note here even though t-SNE is not a

“streaming” algorithm as such, however our motivation here is to demonstrate

its capability in handling multiple manifolds. We show here that t-SNE does

not quite capture the low-dimensional structure of the underlying manifold for

this dataset. In Figure 4.3, the synthetic data set consists of data from two 2-

D manifolds embedded in a 3-D space, as an Isometric Swiss Roll and a plane,

intersecting with each other. In this case, both Isomap and M-Isomap fail (Fig-

ure 4.3c), primarily because M-Isomap assumes that the multiple manifolds do

not intersect.

The core contribution of this chapter is a streaming NLSDR algorithm, called

S-Isomap++. The algorithm assumes that the high dimensional input data con-

sists of samples that truly lie on one or more, potentially intersecting, low-

dimensional manifolds and are embedded into the high dimensional space via

nonlinear transformations. The proposed algorithm extends the widely used

Isomap algorithm to handle multiple intersecting manifolds in a streaming set-

ting. Thus, the proposed algorithm operates under one of the least restrictive

set of assumptions, explored so far in the context of NLSDR methods (See Fig-

ures 4.1e and 4.3d). Moreover, the ability to handle large streams of data makes

it highly applicable in a broad variety of domains.

Another contribution of the chapter is a novel tangent based clustering strat-

egy to separate samples from the input batch, in the original high-dimensional

space, into different clusters. Each cluster is processed independently to ob-

tain the manifold and the corresponding low-dimensional reduction of the cor-

responding data samples, using Isomap. The reduced data samples are then

mapped into a common ambient space by exploiting the relationship between

the samples across the clusters in the original space. The streaming samples are

then mapped, in parallel, on each manifold. An evaluation strategy is employed
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to choose the best manifold for each streaming sample.

The rest of the chapter is organized as follows: we provide necessary back-

ground about manifold learning in Section 4.2. Related works are discussed in

Section 4.3. The proposed algorithm, S-Isomap++, is presented in Section 4.4.

Experimental results on synthetic and benchmark datasets, are summarized in

Section 4.5.

4.2 Background and Motivation

Our motivation for this work stems from one of the foundation principles of

Manifold Learning, which assumes that the distribution of the data in the high-

dimensional observed space is not uniform and in reality, the data lies near a

nonlinear low-dimensional manifold embedded in the high-dimensional space.

In many real-world problems such as those resulting from multi-modal or un-

evenly sampled distributions, the data lies on multiple manifolds of possibly

different “dimensionalities” and is typically separated by regions of low den-

sity as depicted in Figure 4.4. Thus, to find a representative low-dimensional

embedding of the data, one needs to first cluster the data appropriately and

subsequently find a low-dimensional representation for the data in each cluster.

Even then, manifolds can be very close to each other and can have arbitrary in-

trinsic dimensions, curvature and sampling which makes it a hard problem to

solve.

Typically, nonlinear spectral dimensionality reduction (NLSDR) techniques

are used as learning methods for discovering the underlying low-dimensional

structure from samples from high-dimensional data. Existing techniques typi-

cally exploit either the global (Isomap, Minimum Volume Embedding [83]) or

local (LLE, Laplacian Eigenmaps [4]) properties of the manifold to map each

high-dimensional point xi ∈ RD to its corresponding low-dimensional embed-

ding, yi ∈ Rd. They are used as a generic nonlinear, non-parametric technique

to approximate probability distributions in high-dimensional spaces.

The Isomap algorithm, being a global NLSDR technique should ideally pro-

vide a more faithful representation and preserve geometry irrespective of scale

i.e. map data samples which are close in the manifold to points which are close
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in the low-dimensional embedding and similarly for distant samples. However,

it struggles when dealing with multi-modal and non-uniform distributions.

4.2.1 Handling Multiple Manifolds

In the ideal scenario, when manifolds are densely sampled and sufficiently sep-

arated, existing NLSDR methods can be extended to perform clustering before

applying the dimensionality reduction step [56, 20], by choosing an appropri-

ate local neighborhood size so as not to include points from other manifolds

and still be able to capture the local geometry of the manifold. However, if the

manifolds are close or intersecting (See Figures. 4.3, 4.6), such methods typically

fail.

4.3 Related Work

Most existing NLSDR techniques can only deal with a single manifold which

leads to them discovering error-prone low dimensional embeddings given inter-

manifold distances are usually much larger than the intra-manifold distances.

Wu et al. [86] was among the earliest attempts to work with multiple mani-

folds via NLSDR techniques. Since then, other sophisticated approaches [20, 27,

76, 89, 19] have emerged, apart from techniques in the area of manifold align-

ment [82, 26] and manifold clustering [69, 20]. Some assumed a supervised set-

ting [27, 76], and learn multiple sub-manifolds corresponding to different given

classes in a dataset. The MMDA method [89] is based on Locality Preserving

Projections. Similarly, the SMCE algorithm [19] makes assumptions about spar-

sity and linearity of the embedding.

There have been earlier attempts to cluster sub-manifolds [69, 20], which

are primarily based on the idea of forming a graph with edges only between

a node and its nearest neighbors. However, these methods cannot deal with

intersecting manifolds when it is possible for the local neighborhood of a point

to have nearest neighbors from different sub-manifolds. Manifold alignment

approaches [82, 26] typically align manifolds using a set of correspondences

between data points. Whereas [82] uses Procrustes Analysis, [26] tries to solve a
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constrained embedding problem, where the embeddings of the corresponding

points from different sets are constrained to be identical.

In a batch setting, the M-Isomap [20] algorithm comes close to our proposed

work. The algorithm attempts to work with multiple manifolds embedded in a

high-dimensional space. First, it performs clustering to identify the individual

sub-manifolds via a nearest neighbor approach and subsequently runs Isomap

on each of these sub-manifolds. Finally, it stitches the sub-manifolds together

via a set of support points, by finding an optimal transformation between the

embeddings uncovered by Multidimensional Scaling(MDS) [41] and Isomap,

respectively. However, the nearest neighborhood clustering strategy employed

can misrepresent individual sub-manifolds if they are intersecting and/or very

close to each other by grouping them together (See Figure 4.3).

4.4 Methodology

There are two key challenges that a streaming manifold learning algorithm has

to address: 1) handle streaming data in a scalable manner, and, 2) learn in pres-

ence of multiple, possibly intersecting, manifolds.

The proposed S-Isomap++ algorithm follows the two-phase strategy pro-

posed in our earlier work [65], where we first learn exact manifolds from an

initial batch, and then employ a computationally inexpensive mapping method

to process the remainder of the stream. An error metric is used to decide on

when to switch from expensive and exact learning to inexpensive and approxi-

mate mapping [65]. To address the second challenge, we first cluster the batch

data using a tangent-based manifold clustering approach and then apply exact

Isomap on each cluster. The resulting low-dimensional data for the clusters

is then stitched together to obtain the data reduced to a low (and closer to true)

dimensionality.

The overall S-Isomap++ algorithm is outlined in Algorithm 2. The algo-

rithm takes a batch data set, B and the streaming data, S as inputs such that,

B,S ∈ RD. Note that in practical applications, one might not have data split

into batch and streaming parts. In that scenario, one may track the quality of

the output of the batch phase using suitable error metrics [65], and switch when



38

a reliable solution for the batch is obtained. For simplicity, we will assume that

the optimal batch size has been pre-determined. The processing is split into

two phases: a batch learning phase (Lines 1–12) and a streaming phase (Lines

13–20). The batch learning phase consists of three steps:

• Step 1: Cluster samples in B into p clusters (Line 1).

• Step 2: Learn p individual manifolds corresponding to each cluster, and

map samples within each cluster to a low-dimensional representation1

(Lines 6–7).

• Step 3: Map reduced samples from individual manifolds into a global re-

duced space (Lines 8–12).

In the streaming phase, each sample in the stream set S is mapped onto each

of the p manifolds by using an inexpensive mapping procedure (Lines 14-17).

The nearest manifold is identified by comparing each reduced representation of

the sample to the “center” of each manifold (Line 18), and choosing the corre-

sponding reduced representation for the stream sample (Line 19).

The individual components of the proposed S-Isomap++ algorithm are dis-

cussed in the subsequent subsections.

4.4.1 Clustering Multiple Intersecting Manifolds

The objective of the first step in Algorithm 2 is to separate the batch samples

into clusters, such that each cluster corresponds to one of the multiple mani-

folds present in the data. Note that, in this chapter, we do not assume that the

number of manifolds (p) is specified; it is automatically inferred by the cluster-

ing algorithm. In cases of uneven/low density sampling, the clustering strat-

egy discussed might possibly generate many small clusters. In such cases, one

can try to merge clusters, based on their affinity/closeness to allow the num-

ber of clusters to remain within required limits. Given that the batch samples

1The true dimensionality of the manifolds corresponding to the clusters can vary. We assume
that the true dimensionality for each cluster has been determined using techniques such as
studying the spectral properties of the geodesic distance matrix computed as part of Isomap
learning (See Figure 4.5).
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Algorithm 2 S-Isomap++

Require: Batch dataset: B, Streaming dataset: S; Parameters: ε, k, l, λ
Ensure: YS : low-dimensional representation for S

1: Ci=1,2...p ← FIND CLUSTERS(B, ε)
2: ξs ← ∅

3: for 1 ≤ i ≤ p do
4: LDE i ← ISOMAP(Ci)
5: end for

6: ξs ←
p⋃

i=1

p⋃
j=i+1

NN(Ci,Cj, k) ∪ FN(Ci,Cj, l)

7: GE s ← MDS(ξs)

8: for 1 ≤ j ≤ p do
9: I ← ξs ∩ Cj

10: A←
[

LDEIj
eT

]
11: Ri, ti ← GEI ,s ×AT(AAT + λI

)−1

12: end for

13: for s ∈ S do
14: for 1 ≤ i ≤ p do
15: yi

s ← S-ISOMAP(s,Ci)
16: GE i

s ←Riyi
s + ti

17: end for

18: m← argmini

∣∣yi
s − µ(Ci,Ri, ti)

∣∣
19: YS ← YS ∪ ym

s
20: end for

21: return YS

lie on low-dimensional and potentially intersecting manifolds, it is evident that

the standard clustering methods, such as K-Means [35], that operate on the ob-

served data in RD, will fail in correctly identifying the clusters.

To handle this challenge, we propose a novel clustering algorithm that is

based on the notion of smoothness of manifold surfaces. Consider a single batch

data sample, xi ∈ RD. Let N (xi) be the set of k nearest neighbor samples of xi



40

Algorithm 3 Tangent Manifold Clustering
1: function FIND CLUSTERS(B, ε)
2: Si=1,2...n ← MSVD(B)

3: ρ← 0n×1
4: idx← 1

5: while ρi=1,2...n 6= 0 do
6: Cidx, ρ← CLUSTER(B,S,ρ, idx, ε)
7: idx← idx + 1
8: end while
9: return Ci=1,2...p

10: end function

in the batch B. Let Ti denote a d′ dimensional tangent plane represented using d′

basis vectors, ti1, ti2, . . . , tid′ , i.e., Ti = span(ti1, ti2, . . . , tid′). Here, d′ denotes the

intrinsic dimensionality of the tangent plane. We assume that each xi belongs to

a single manifold Mj, ∃j ∈
{

1, 2 . . . p
}

.

The proposed clustering algorithm (Algorithm 3) is based on the following

intuition: For a given sample, xi, and its neighbor xj ∈ N (xi):

If Mi = Mj ⇒ φ(Ti,Tj) ≥ ε (4.1)

φ(Ti,Tj) = cos(θ), where θ is the angle between the two tangent planes2, Ti

and Tj. Similarly,

If Mi 6= Mj ⇒ φ(Ti,Tj) < ε (4.2)

In other words, within a tight neighborhood, a given data sample and its neigh-

bors are expected to lie on tangent planes that are approximately similar in ori-

entation, and, thus, the cosine of the angle between the two planes will be closer

to 1 (cos(θ) ≈ 1). However, if a sample’s neighborhood contains samples that

lie on other intersecting manifolds, their tangent planes should be significantly

different, and cos(θ)� 1.

2Ti and Tj are the tangent planes for the samples xi and xj.
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Algorithm 4 Incremental Partitioning Strategy
1: function CLUSTER(B,S,ρ, m, ε)
2: Cm ← ∅, Co ← ∅
3: I ←

{
i|ρi = 0

}
, k ∼ RANDOM(I)

4: Cm ← Cm ∪ Bk
5: Co ← Co ∪ Bk, ρk ← m
6: σn ← 1, mode = ‘L1’

7: while σn > 0 do
8: σn ← 0, Cn ← ∅

9: for ∀i ∈ Co do
10: Iknn ← KNN(B, i)
11: for ∀j ∈ Iknn do
12: if labelsj = 0 then
13: simi,j ← SIM(Si, Sj, mode)
14: if simi,j ≥ ε then
15: Cn ← Cn ∪ Bj
16: labelsj ← m
17: σn ← σn + 1
18: end if
19: end if

20: end for
21: end for

22: Cm ← Cm ∪ Cn, Co ← Cn
23: end while

24: return Cm,ρ
25: end function

4.4.1.1 Learning a Tangent Plane for a Given Sample

We use Multiscale Singular Value Decomposition (or MSVD [48]) on the local neigh-

borhood of xi, to determine basis vectors, ti1, ti2, . . . , tid′ , which define the tan-

gent plane, Ti.

Use of SVD allows us to follow the intuitions expressed in (4.1) and (4.2),

since it explores directions in which the spread of points is maximal. In the
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presence of multiple intersecting manifolds, these directions get mangled up,

whereas non-intersecting regions have better agreement with regards to princi-

pal directions.

MSVD allows us to deal with the problem of estimating the intrinsic dimen-

sion of noisy, high-dimensional point clouds. For the linear case, SVD analysis

can estimate the intrinsic dimensionality of M correctly, with high probability.

However, when M is a nonlinear manifold, curvature forces the dimension-

ality of the best-approximating hyperplane to be much higher, which hinders

attempts to uncover the true intrinsic dimensionality of M. Little et al. [48]

show that this is due to performing PCA globally rather than locally.

MSVD estimates the intrinsic dimensionality of M by computing the singu-

lar values, σz,r
i for all ∀z ∈ M at different scales r > 0 and i ∈ {1, 2, . . . D}.

Small values of r lead to not enough samples in B(z, r), while large values of r

lead to curvature making the SVD computation over estimate the intrinsic di-

mensionality. At the right scale (value of r), the true σz,r
i ’s separate from the

noise σz,r
i ’s due to their different rates of growth and the true dimensionality of

M is revealed. Figure 4.5 demonstrates how σz,r
i behave over different scales

when MSVD is done a noisy R5 sphere embedded in R100 ambient space. No-

tice how the noise dimensions decay out, leaving only the primary components

at the appropriate scale.

4.4.1.2 Computing Angle Between Two Tangent Planes

We explore several strategies of computing the similarity between a pair of tan-

gent planes, Ti and Tj. As mentioned earlier, this is equivalent to computing

the cosine of the angle between the two planes. We consider one approach, as

proposed by Gunawan et al. [24]. Let Ti and Tj be orthonormal subspaces3. If θ

is the angle between Ti and Tj, then:

φ(Ti,Tj) = cos(θ) =
√

det(NN>) (4.3)

3One can use QR factorization to orthonormalize any subspace, which is not already or-
thonormal.
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where N is a matrix, such that N [u][v] = 〈tiu, tjv〉, where tiu is the uth basis

vector for Ti and tjv is the vth basis vector for Tj.

Additionally, when the dimensionality of Ti and Tj is same, the expression

simplifies to:

φ(Ti,Tj) = cos(θ) = |det(N )| (4.4)

Alternately, one can use the following procedure. Without loss of generality,

let us assume that ti1, ti2, . . . , tik are the singular vectors for the plane Ti corre-

sponding to the top k singular values. Similarly, let tj1, tj2, . . . , tjk be the top-k

singular vectors for the plane Tj. Then we can compute φ(Ti,Tj) as:

φ(Ti,Tj) =
1
k

k

∑
l=1
|t>il tjl| (4.5)

We refer to the above as the L1 metric. In the same way, one can define the L2

metric as:

φ(Ti,Tj) =

√√√√ 1
k

k

∑
l=1

(t>il tjl)2 (4.6)

4.4.1.3 Tangent Manifold Clustering Algorithm

The proposed tangent manifold clustering strategy is outlined in Algorithm 3.

Algorithm 4 is the support method to the above. The inputs to the Algorithm 3

are the batch dataset B and a threshold value ε.

Algorithm 3 initially calls MSVD(·) (See Section 4.4.1.1) on the input batch

set, B, to decide on an appropriate scale r to use and subsequently to extract the

top-k singular vectors Si=1,2...n for all xi ∈ B, at the scale r. Initially all points are

unlabeled i.e. ρ is all zeros initially. Algorithm 3 calls CLUSTER(·) repeatedly till

all xi ∈ B have labels assigned to them, which represents the different clusters,

Ci for i = 1, 2 . . . q where
q⋃

i=1
Ci = B.

Algorithm 4, which contains the function CLUSTER(·)4, works as follows: it

picks a currently unlabeled xi at random, and assigns it to a new cluster Cm.

Subsequently, it looks at the unassigned nearest neighbors of xi i.e. xj ∈ N (xi)

4We use ‘L1’ as the mode by default (Line 6) since it provides the best accuracy.
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and checks to see how close their tangent planes are. If they are similar enough

i.e. the similarity score φ(Ti,Tj) ≥ ε, then the unassigned nearest neighbor is

assigned to Cm. The algorithm proceeds similarly in a breadth-first manner till

no new points remain to be tested.

It internally calls Algorithm SIM(·) to measure similarity, using one of the

three strategies, discussed in Section 4.4.1.2 (See (4.4), (4.5), and (4.6)).

4.4.2 Processing multiple manifolds

The S-Isomap++ algorithm independently learns the manifolds for each cluster

(Lines 3–5). However, since these manifolds are not necessarily aligned with

respect to each other, an additional step is needed to represent the reduced sam-

ples from each cluster into a common space. We refer to this process as stitching,

and is essential to recreate the final reduced representation. This step, similar

to the approach in M-Isomap, maintains the information of the global location

of different manifolds using a set of support points which form the skeleton

on which it can later places the different manifolds. This support set is formed

using the k nearest neighbor pairs as well as the l farthest neighbor pairs be-

tween every pair of manifolds present i.e. ∀{Ci,Cj}j 6=i, let Xi,j ∈ R|Ci|×|Cj| de-

note the RD Euclidean distance matrix between all points in clusters Ci and Cj,

then support set ξs contains the co-ordinates (index sets Ii and Ij from Ci and

Cj respectively) of both the smallest k values as well as the largest l values in

Xi,j. The former are calculated by method NN(·) and the latter FN(·) (Line 6).

Subsequently, a global reduced space embedding GE s for this support set is cal-

culated using MDS (Line 7). After this, for each manifold Mj, ∃j ∈
{

1, 2 . . . p
}

,

a least-squares problem is solved to generate the transformation components

Ri, ti which can project reduced samples from each cluster into the global space

(Lines 8–12).

4.4.3 Mapping Streaming Samples

In the streaming part, each sample in the stream set S is mapped onto each of

the p manifolds in parallel, using the inexpensive S-ISOMAP(·) algorithm pro-

posed in our earlier work [65] (Line 15) and subsequently mapped to the global
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space using {Ri, ti} ∃i ∈
{

1, 2 . . . p
}

(Line 16). The nearest manifold is identi-

fied by comparing each reduced representation of the sample to the mean µ(·)
of each manifold (Line 18), and choosing the corresponding reduced represen-

tation for the stream sample (Line 19).

4.5 Results and Analysis

4.5.1 Experimental Setup

We present several experiments here on a variety of data sets to illustrate the

behavior of different approaches proposed in the Section 4.4.

We use four different datasets in our experiments. Given Swiss Roll datasets

are typically used for evaluating manifold learning algorithms, we use the Euler
Isometric Swiss Roll dataset, proposed by Schoeneman et al. [65], wherein a R2

data set having n = 3000 points, chosen at random, are embedded into R3 using

a nonlinear function ψ(·). We use this in conjunction with a R3-dimensional

hyperplane passing through it as shown in Figure. 4.3b having n = 1500 points,

chosen at random. We know the ground truth for both parts (See Figure. 4.3a).

We use this to evaluate the S-Isomap++ algorithm as shown in Figure. 4.3. We

also use an extension of this, wherein two R3-dimensional hyperplanes pass

through the Isometric Swiss Roll, wherein the points are chosen in random and

each hyperplane has n = 3000 points, as shown in Figure. 4.6.

Apart from this, we use different artificial datasets consisting of intersecting

manifolds i.e. two intersecting R3-dimensional unit hyperspheres, having n =

1000 points each and a R3-dimensional plane intersecting a R3-dimensional hy-

persphere, again having n = 1000 points each, as shown in Figure. 4.7. We

use these datasets to test our tangent manifold approach more rigorously. We

also use patches on the Euler Isometric Swiss Roll dataset (Figure. 4.1) which are

Gaussian in nature, to study the effect of the different parameters, apart from

evaluating our algorithm, as well as the MNIST digits dataset.

Our evaluation metrics for the experiments primarily focus on 1) ability on

our tangent manifold clustering strategy to be able to cluster points from mul-

tiple intersecting/non-intersecting manifolds correctly, 2) test the quality of the



46

embedding uncovered by our algorithm, for the streaming dataset S, with re-

gards to agreeability with ground truth via an appropriate distance metric, as

well as, tightness of clustering and last but not the least, 3) scalability of our

algorithm over different sizes of both batch and streaming datasets B and S
respectively.

4.5.2 Results on Artificial Datasets

4.5.2.1 Gaussian patches on Isometric Swiss Roll

Figures. 4.1c, 4.1d, 4.1e demonstrate the results with this dataset for Isomap, M-

Isomap and our approach respectively. Both the M-Isomap and S-Isomap++ al-

gorithms can deal with individual manifolds better than Isomap, which severely

deforms the individual clusters. It should also be noted that whereas both the

M-Isomap and S-Isomap++ algorithms required small values of k i.e. k = 8 to

operate, Isomap needed values of k ≥ 500 to even work. As a consequence,

idiosyncrasies i.e. short-circuiting become a factor to distort the uncovered em-

bedding. M-Isomap has scaling issues and can only seem to attempt to position

the individual manifolds in the global ambient space correctly, without being

able to recreate the spread, which defined the individual manifolds. We think

that M-Isomap internally normalizes individual manifolds which results in this

behavior. Our approach, S-Isomap++ is the most robust in its recreation of the

ground truth.

4.5.2.2 Intersecting Swiss Roll with R3-dimensional plane

Figure. 4.3 demonstrates our experiments with this dataset. We evaluate dif-

ferent algorithms to see how well they recreate the ground truth (Figure. 4.3a).

Both Isomap and M-Isomap produce the same output, given M-Isomap em-

ploys a nearest-neighbor based clustering strategy to disambiguate between

manifolds, and hence is unable to handle intersecting manifolds, which results

in highly distorted recreations of the ground truth. As before, S-Isomap++ pro-

duces the most robust recreation of the ground truth. Figure 4.6, demonstrates

how well S-Isomap++ recreates the original manifolds, in case the batch B is
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clustered correctly. M-Isomap/Isomap are unable to recreate the ground truth

and severely contort the ground truth.

4.5.2.3 Tangent Manifold Clustering

Here we present clustering results for intersecting manifolds. (See Figures. 4.3, 4.7

for the different datasets). Table 4.1 below demonstrates accuracy values5 with

which the L-1, L-2 metric schemes proposed in this work, along with the tech-

nique proposed by Gunawan et al. [24] clustered the different intersecting man-

ifolds. The L-2 metric performed much better than Gunawan’s approach, how-

ever the L-1 metric performed the best. The accuracy values are also indicative

of the level of difficulty associated with clustering the different scenarios cor-

rectly.

Method L-1 L-2 Gunawan
Sphere-Sphere 0.825 0.619 0.5
Sphere-Plane 0.759 0.602 0.5

Swiss Roll-Plane 0.838 0.621 0.5

Table 4.1: Accuracy scores for the different tangent manifold clustering ap-
proaches.

4.5.2.4 Effect of different parameters

Here we present results of the effect of changing the different parameters of the

S-Isomap++ algorithm, while keeping all other parameters fixed. Figures 4.8, 4.9, 4.10,

demonstrates the effect of parameter λ, k and l on the embeddings uncovered

by the S-Isomap++ algorithm. Larger values of k seems to make the manifolds

more uniform or rounded. Larger values of parameter l seem to stretch the

manifolds. Parameter λ seem to separate the manifolds apart when it has larger

values. This is really interesting since it means we can use it to visualize mani-

folds better on account of separability.

5Gunawan’s approach was unable to distinguish between the intersecting manifolds scenar-
ios and always clustered them as one and hence its accuracy was 0.5 in all cases.
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Figure 4.11 demonstrates the scalability of our algorithm with regards to

streaming data S. Batch B having size n = 2000 was used for this experi-

ment. The timing results are in log scale and clearly demonstrate the efficiency

gained. M-Isomap has the same result as Isomap since it cannot distinguish

between intersecting manifolds and treats them as one. While the run-time for

Isomap/M-Isomap increases rapidly with increasing stream size, the run time

for S-Isomap++ does not grow much at all, making it highly conducive to large

stream processing.

4.5.3 Results on MNIST Dataset

Table 4.2 below shows results for different digits of the MNIST dataset. Using a

batch dataset B of size n = 2000, a streaming dataset S of size m = 4000 was

recreated in 3-D by the S-Isomap++ algorithm, for each of the digits. Subse-

quently the 3-D recreation was compared to the 3-D ground truth obtained by

running Isomap on all digits, using the Procrustes Error metric to measure the

quality of the recreation.

The Procrustes Error metric determines an optimal alignment between two

matrices X and Y and returns a goodness-of-fit criterion, based on sum of

squared errors. As the results below demonstrate, the recreation error is pretty

low, even after embedding in the common global space. This shows the efficacy

of the S-Isomap++ algorithm.

digit ‘0’ 0.0296 digit ‘3’ 0.0364 digit ‘6’ 0.0476
digit ‘1’ 0.0806 digit ‘4’ 0.0586 digit ‘8’ 0.0712
digit ‘2’ 0.0499 digit ‘5’ 0.0449 digit ‘9’ 0.0498

Table 4.2: Procrustes error values for different digits of the MNIST dataset, com-
puted by comparing the original with 3-D recreation via S-Isomap++.

4.6 Conclusion

The proposed S-Isomap++ algorithm allows for scalable nonlinear dimensional-

ity reduction of streaming high-dimensional data. By allowing for the samples
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to belong to multiple manifolds, or sampled non-uniformly from a single man-

ifold, we have developed an algorithm that can be applied to a wide variety

of practical settings. Moreover, the two-phase strategy for streaming Isomap,

first proposed in [65], and adapted here for multiple manifold learning, allows

us to scale a computationally intensive algorithm (Isomap) to arbitrarily large

streams.

The ability to cluster data lying on multiple intersecting manifolds is a key

innovation, proposed as the Tangent Manifold Clustering algorithm, allows us

to automatically identify the number of underlying manifolds. One limitation of

the method, however, is that it assumes that all manifolds are represented in the

batch data set, which means that a novel manifold behavior that might appear

subsequently in the stream, will not be learned. This issue will be studied in

future research.
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Figure 4.2: Multi-manifold Swiss Roll data set. 2-D samples are embedded into
3-D via the Euler Isometric mapping technique [65]. Considering the stochastic
nature of the state-of-the-art t-SNE algorithm [49] and given its popularity for
the visualization of high-dimensional datasets particularly in scenarios when
the underlying manifold dimensionality (d) is ≤ 3, here we demonstrate the
results for the low-dimensional embeddings uncovered by four different simu-
lations of the t-SNE algorithm on the same batch data set. The quality of low-
dimensional embeddings uncovered by t-SNE is not good and the results vary
quite a bit in every simulation i.e. there is a general lack of stability. We can ob-
serve that at least one of the manifolds is “broken” in every simulation. We note
here even though t-SNE is not a “streaming” algorithm as such, however our
motivation here is to demonstrate its capability in handling multiple manifolds.
We show here that t-SNE does not quite capture the low-dimensional structure
of the underlying manifold for this dataset. Refer to Figure 4.1 for results of
S-Isomap++ as well as the low-dimensional ground-truth.
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(a) Original Data in 2-D
(b) Embedded Data (in-
put) in 3-D

(c) Isomap/M-Isomap
Output

(d) Proposed S-Isomap++
Output

Figure 4.3: Multi-manifold intersecting data set. One set of 2-D samples (blue) in
(a) are embedded into 3-D in (b) via the Euler Isometric mapping technique [65].
Second set (cyan) are embedded using a linear mapping. The reduction to 2-D
is obtained using: (c). Isomap/M-Isomap, and (d). the proposed S-Isomap++
algorithm. Both Isomap and M-Isomap give the same output because M-Isomap
cannot handle intersecting manifolds and, thus, reverts to a single manifold
scenario.
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Figure 4.4: 2-D reduction of a sample of images from the MNIST digits dataset.
Real-world data generally lies near multiple manifolds and is usually separated
by regions of low density.

Figure 4.5: Multiscale SVD on a noisy R5 sphere embedded in R100 ambient
space.
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Algorithm 5 Similarity between tangent planes between points
1: function SIM(Si, Sj, mode)
2: ηi=1,2...k ← extract(Si)
3: κi=1,2...k ← extract(Sj)
4:
5: if mode = ‘L1′ then
6: s← 1

k ∑k
i=1
∣∣ηi

Tκi
∣∣

7:
8: else if mode = ‘L2′ then
9:

10: s←
√

∑k
i=1

1
k (ηi

Tκi)2

11:
12: else if mode = ‘HG′ then
13: Mη ← matrix(ηi=1,2...k)
14: Mκ ← matrix(κi=1,2...k)
15:
16: M←Mη

TMκ

17: s← |det(M)|
18: end if
19:
20: return s
21: end function
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Figure 4.6: Top Left: Actual manifolds in R3 space, clustered to demonstrate in-
dividual manifolds, Top Right: Recreation by Isomap/M-Isomap, Bottom Row:
Recreation by our approach, S-Isomap++.
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Figure 4.7: Left: Original datasets unclustered, Right: Clustered using the pro-
posed tangent clustering method.
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Figure 4.8: Effect of changing λ. Top Left: λ = 0.01, Top Right: λ = 0.02, Bottom
Left: λ = 0.04, Bottom Right: λ = 0.16
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Figure 4.9: Effect of changing k. Top Left: k = 8, Top Right: k = 16, Bottom
Left: k = 24, Bottom Right: k = 32

Figure 4.10: Effect of changing l. Left: l = 1, Right: l = 4
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Figure 4.11: The results are in log scale and demonstrate the scalability of our
proposed algorithm.



Chapter 5
GP-Isomap

5.1 Introduction

High-dimensional data is inherently difficult to explore and analyze, owing to

the “curse of dimensionality” that render many statistical and machine learning

techniques inadequate. In this context, nonlinear spectral dimensionality reduc-
tion (NLSDR) has proved to be an indispensable tool. Manifold learning based

NLSDR methods, such as Isomap[74], Local Linear Embedding (LLE)[60], etc.,

assume that the distribution of the data in the high-dimensional observed space

is not uniform and in reality, the data lies near a non-linear low-dimensional

manifold embedded in the high-dimensional space.

If directly applied on streaming data, NLSDR methods have to recompute

the entire manifold each time a new point is extracted from a stream. This

quickly becomes computationally prohibitive but guarantees the best possible

quality of the learned manifold given the data. To alleviate the computational

problem, landmark [68] or general Out-of-Sample Extension methods [86] have

been proposed. These techniques are still computationally expensive for practi-

cal applications. Recent streaming adaptations of NLSDR methods have relied

on exact learning from a smaller batch of observations followed by approximate

mapping of subsequent stream of observations [65]. Extensions to cases when

the observations are sampled from multiple and possibly intersecting manifolds

have been proposed as well [50].
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However, existing streaming manifold learning methods [65, 50] assume that

the underlying generative distribution is stationary over the stream, and are

unable to detect when the distribution “drifts” or abruptly “shifts” away from

the base, resulting in incorrect low-dimensional mappings (See Fig. 5.1). We

develop a methodology to identify such changes (drifts and shifts) in the stream

properties and inform the streaming algorithm to update the base model.

Figure 5.1: Impact of changes in the data distribution on streaming NLSDR. In
the top panel, the true data lies on a 2-D manifold (top-left) and the observed
data is in R3 obtained by using the Swiss Roll transformation of the 2-D data
(top-middle). The streaming algorithm [65] uses a batch of samples from a 2-D
Gaussian (black), and maps streaming points sampled from a uniform distri-
bution (gray). The streaming algorithm performs well on mapping the batch
points to R2 but fails on the streaming points that “drift” away from the batch
(top-right). In the bottom panel, the streaming algorithm [50] uses a batch of sam-
ples from three 2-D Gaussians (black). The stream points are sampled from the
three Gaussians and a new Gaussian (gray). The streaming algorithm performs
well on mapping the batch points to R2 but fails on the streaming points that
are “shifted” from the batch (bottom-right).

We employ a Gaussian Process (GP) [85] based adaptation of Isomap [74], a

widely used NLSDR method, to process high throughput streams. The use of

GP is enabled by a novel kernel that measures the relationship between a pair

of observations along the manifold, and not in the original high-dimensional
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Figure 5.2: A single patch from the Euler Isometric Swiss Roll is used as the
“batch” and streaming points sampled from a uniform distribution are mapped
using GP-Isomap. We can observe the smooth and gradual increase in variance
of predictions as the streaming points move further away from the batch which
demonstrates that the usage of geodesic distances via the proposed kernel is
apt when dealing with manifolds to mapping samples, rather than using Eu-
clidean distance based kernels. See also Figure 5.4. Variance (t ≤ 1000, brown)
is pretty small for streaming samples within/close to the Gaussian patch, while
for samples (t ≥ 1000, blue), the predicted variance is much higher.

space. We prove that the low-dimensional representations inferred using the

GP based method, GP-Isomap, are equivalent to the representations obtained

using the state-of-art streaming Isomap methods [65, 50]. Additionally, we em-

pirically show, on synthetic and real datasets, that the predictive variance as-

sociated with the GP predictions is an effective indicator of the changes (either

gradual drifts or sudden shifts) in the underlying generative distribution, and

can be employed to inform the algorithm to “re-learn” the core manifold.
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5.2 Problem Statement and Preliminaries

We first formulate the NLSDR problem and provide background on Isomap and

discuss its Out-of-Sample and Streaming Extensions [6, 65, 50, 43]. Additionally,

we provide brief introduction to Gaussian Process (GP) analysis.

5.2.1 Nonlinear Spectral Dimensionality Reduction

Given high-dimensional data Y = {yi}i=1...n, where yi ∈ RD, the NLSDR prob-

lem is concerned with finding its corresponding low-dimensional representa-

tion X = {xi}i=1...n, such that xi ∈ Rd, where d� D.

NLSDR methods assume that the data lies along a low-dimensional mani-

fold embedded in a high-dimensional space, and exploit the global (Isomap [74],

Minimum Volume Embedding [83]) or local (LLE [60], Laplacian Eigenmaps [4])

properties of the manifold to map each yi to its corresponding xi ∈ Rd.

The Isomap algorithm [74] maps each yi to its low-dimensional representa-

tion xi in such a way that the geodesic distance along the manifold between any

two points, yi and yj, is as close to the Euclidean distance between xi and xj

as possible. The geodesic distance is approximated by computing the shortest

path between the two points using the k-nearest neighbor graph and is stored

in the geodesic distance matrix G = {gi,j}1≤i,j≤n, where gi,j is the geodesic dis-

tance between the points yi and yj. G̃ = {g2
i,j}1≤i,j≤n contains squared geodesic

distance values. The Isomap algorithm recovers xi by using the classical Multi

Dimensional Scaling (MDS) on G̃. Let B be the inner product matrix between

different xi. B can be retrieved as B = −HG̃H/2 by assuming
n
∑

i=1
xi = 0,

where H = {hi,j}1≤i,j≤n and hi,j = δi,j − 1/n, where δi,j is the Kronecker delta.

Isomap uncovers X such that XTX is as close to B as possible. This is achieved

by X = {
√
λ1q1

√
λ2q2 . . .

√
λdqd}T where λ1,λ2 . . .λd are the d largest eigen-

values of B and q1, q2 . . . qd are the corresponding eigenvectors.

To measure error between the true, underlying low-dimensional representa-

tion to that uncovered by NLSDR methods, Procrustes analysis [16] is typically

used. Procrustes analysis involves aligning two matrices, A and B, by finding

the optimal translation t, rotation R, and scaling s that minimizes the Frobenius
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norm between the two aligned matrices, i.e.,:

εProc(A, B) = min
R,t,s
‖sRB + t−A‖F

The above optimization problem has a closed form solution obtained by per-

forming Singular Value Decomposition (SVD) of ABT [16]. Consequently, one

of the properties of Procrustes analysis is that εProc(A, B) = 0 when A = sRB+ t

i.e. when one of the matrices is a scaled, translated and/or rotated version of

the other, which we leverage upon in this work.

5.2.2 Streaming Isomap

Given that the Isomap algorithm has a complexity of O(n3) (where n - size of

data), recomputing the manifold is computationally too expensive or impracti-

cal to use in a streaming setting. Incremental techniques have been proposed in

the past [43, 65], which can efficiently process the new streaming points, without

affecting the quality of the embedding significantly.

The S-Isomap algorithm relies on the observation that a stable manifold can

be learnt using only a fraction of the stream (denoted as the batch dataset B),

and the remaining part of stream (denoted as the stream dataset S) can be

mapped to the manifold in a significantly less costly manner. This can be jus-

tified by considering the convergence of eigenvectors and eigenvalues of B, as

the number of points in the batch increase [66]. In particular, the bounds on the

convergence error for a similar NLSDR method, i.e., kernel PCA, is shown to

be inversely proportional to the batch size [66]. Similar arguments can be made

for Isomap, by considering the equivalence between Isomap and Kernel PCA

[25, 6]. This relationship has also been empirically shown for multiple data sets

[65].

The S-Isomap algorithm computes the low-dimensional representation for

each new point i.e. xn+1 ∈ Rd by solving a least-squares problem formulated

by matching the dot product of the new point with the low-dimensional em-

bedding of the points in the batch dataset X, computed using Isomap, to the

normalized squared geodesic distances vector f. The least-squares problem has
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the following form:

XTxn+1 = f

where1

fi '
1
2
( 1

n ∑
j

g2
i,j − g2

i,n+1
)

(5.2)

5.2.3 Handling Multiple Manifolds

In the ideal case, when manifolds are densely sampled and sufficiently sepa-

rated, clustering can be performed before applying NLSDR techniques [56, 20],

by choosing an appropriate local neighborhood size so as not to include points

from other manifolds and still be able to capture the local geometry of the mani-

fold. However, if the manifolds are close or intersecting, such methods typically

fail.

The S-Isomap++ [50] algorithm overcomes limitations of the S-Isomap al-

gorithm and extends it to be able to deal with multiple manifolds. It uses

the notion of Multi-scale SVD [48] to define tangent manifold planes at each

data point, computed at the appropriate scale, and compute similarity in a lo-

cal neighborhood. Additionally, it includes a novel manifold tangent clustering

algorithm to be able to deal with the above issue of clustering manifolds which

are close and in certain scenarios, intersecting, using these tangent manifold

planes. After initially clustering the high-dimensional batch dataset, the algo-

rithm applies NLSDR on each manifold individually and eventually “stitches”

them together in a global ambient space by defining transformations which can

map points from the individual low-dimensional manifolds to the global space.

1Note that the Incremental Isomap algorithm [43] has a slightly different formulation where

fi '
1
2
( 1

n ∑
j

g2
i,j −

1
n2 ∑

l,m
g2

l,m
)
+

1
2
( 1

n ∑
j

g2
j,n+1 − g2

i,n+1
)

(5.1)

The S-Isomap algorithm assumes that the data stream draws from an uniformly sampled, uni-
modal distribution p(x) and that the stream S and the batch B datasets get generated from
p(x). Additionally it assumes that the manifold has stabilized i.e. |B| = n is large enough.
Using these assumptions in (5.1) above, we have that

( 1
n ∑

j
g2

j,n+1 −
1

n2 ∑
l,m

g2
l,m
)
= ε ' 0 i.e.

the expectation of squared geodesic distances for points in the batch dataset B is close to those
for points in the stream dataset S. The line of reasoning for this follows from [30]. Thus (5.1)
simplifies to (5.2).
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However, S-Isomap++ can only detect manifolds which it encounters in its batch

learning phase and not those which it might encounter in the streaming phase.

5.2.4 Gaussian Process Regression

Let us assume that we are learning a probabilistic regression model to obtain

the prediction at a given test input, y, using a nonlinear and latent function,

φ(). Assuming2 d = 1, the observed output, x, is related to the input as:

x = φ(y) + ε, where, ε ∼ N (0,σ2
n) (5.3)

Given a training set of inputs, Y = {yi}i=1...n and corresponding outputs, X =

{xi}i=1...n, the Gaussian Process Regression (GPR) model assumes a GP prior

on the latent function values, i.e., φ(y) ∼ GP(m(y), k(y, y′)), where m(y) is

the mean of φ(y) and k(y, y′) is the covariance between any two evaluations

of φ(), i.e, m(y) = E[φ(y)] and k(y, y′) = E[(φ(y)−m(y))(φ(y′)−m(y′))].

Here we use a zero-mean function (m(y) = 0), though other functions could be

used as well. The GP prior states that any finite collection of the latent function

evaluations are jointly Gaussian, i.e.,

φ(y1, y2, . . . , yn) ∼ N (0, K) (5.4)

where the ijth entry of the n× n covariance matrix, K, is given by k(yi, yj). The

GPR model uses (5.3) and (5.4) to obtain the predictive distribution at a new test

input, yn+1, as a Gaussian distribution with following mean and variance:

E[xn+1] = k>n+1(K + σ2
nI)−1X (5.5)

var[xn+1] = k(yn+1, yn+1)− k>n+1(K + σ2
nI)−1kn+1 + σ

2
n (5.6)

where kn+1 is a n× 1 vector with ith value as k(yn+1, yi).

The kernel function, k(), specifies the covariance between function values,

φ(yi) and φ(yj), as a function of the corresponding inputs, yi and yj. A popular

2For vector-valued outputs, i.e., x ∈ Rd, one can consider d independent models.
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choice is the squared exponential kernel, which has been used in this work:

k(yi, yj) = σ2
s exp

[
−
(yi − yj)

2

2`2

]
(5.7)

whereσ2
s is the signal variance and ` is the length scale. The quantitiesσ2

s , `, and

σ2
n (from (5.3)) are the hyper-parameters of the model and can be estimated by

maximizing the marginal log-likelihood of the observed data (Y and X) under

the GP prior assumption.

One can observe that predictive mean, E[xn+1] in (5.5) can be written as an

inner product, i.e.,:

E[xn+1] = β>kn+1 (5.8)

where β = (K + σ2
nI)−1X. We will utilize this form in subsequent proofs.

5.3 Methodology

The proposed GP-Isomap algorithm follows a two-phase strategy (similar to

the S-Isomap and S-Isomap++), where exact manifolds are learnt from an ini-

tial batch B, and subsequently a computationally inexpensive mapping proce-

dure processes the remainder of the stream. To handle multiple manifolds, the

batch data B is first clustered via manifold tangent clustering or other stan-

dard techniques. Exact Isomap is applied on each cluster. The resulting low-

dimensional data for the clusters is then “stitched” together to obtain the low-

dimensional representation of the input data. The difference from the past

methods is the mapping procedure which uses GPR to obtain the predictions

for the low-dimensional mapping (See (5.5)). At the same time, the associated

predictive variance (See (5.6)) is used to detect changes in the underlying distri-

bution.

The overall GP-Isomap algorithm is outlined in Algorithm 6 and takes a

batch data set, B and the streaming data, S as inputs, along with other parame-

ters. The processing is split into two phases: a batch learning phase (Lines 1–15)

and a streaming phase (Lines 16–32), which are described later in this section.
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Algorithm 6 GP-Isomap

Require: Batch dataset: B, Streaming
dataset: S; Parameters: ε, k, l, λ,
σt, ns

Ensure: YS : low-dimensional repre-
sentation for S
. Batch Phase

1: Ci=1,2...p ← FIND CLUSTERS(B, ε)
2: ξs ← ∅

3: for 1 ≤ i ≤ p do
4: LDE i,Gi ← ISOMAP(Ci)
5: end for

6: for 1 ≤ i ≤ p do
7: φGPi ← ESTIMATE(LDE i,Gi)
8: end for

9: ξs ←
p⋃

i=1

p⋃
j=i+1

NN(Ci,Cj, k) ∪

FN(Ci,Cj, l)

10: GE s ← MDS(ξs)

11: for 1 ≤ j ≤ p do
12: I ← ξs ∩ Cj

13: A←
[

LDEIj
eT

]

14: Ri, ti←GEI ,s×AT(AAT + λI
)−1

15: end for

. Streaming Phase
16: Su ← ∅

17: for s ∈ S do
18: if |Su| ≥ ns then
19: Yu ← Re-run Batch Phase

with B ← B ∪Su
20: YS ← YS ∪Yu
21: end if
22: for 1 ≤ i ≤ p do
23: µi,σi←GP REG(s,LDE i,Gi,φGP

i )
24: end for

25: j← argmini |σi|

26: if σj ≤ σt then
27: ys ←Rjµj + tj
28: YS ← YS ∪ ys
29: else
30: Su ← Su ∪ s
31: end if
32: end for

33: return YS

5.3.1 Kernel Function

The proposed GP-Isomap algorithm uses a novel geodesic distance based kernel

function defined as:

k(yi, yj) = σ2
s exp

(
−

bi,j

2`2

)
(5.9)

where bi,j is the ijth entry of the normalized geodesic distance matrix, B, as

discussed in Sec. 5.2.1, σ2
s is the signal variance (whose value we fix as 1.0 in

this work) and ` is the length scale hyper-parameter. Thus the kernel matrix K



68

can be written as:

K = exp
(
− B

2`2

)
(5.10)

This kernel function plays a key role in using the GPR model for mapping

streaming points on the learnt manifold, by measuring similarity along the low-

dimensional manifold, instead of the original space (RD), as is typically done

in GPR based solutions. The matrix, B, is positive semi-definite3 (PSD), due to

the double mean centering done to squared geodesic distance matrix G̃. Con-

sequently, we note that the kernel matrix, K, is positive definite (refer (5.11)

below).

Using lemmas 5.8.1 and 5.8.2 defined in Sec. 5.8, the novel kernel we propose

can be written as

K
(
x, y
)
= I +

d

∑
i=1

[
exp

(
− λi

2`2

)
− 1
]
qiqT

i = I + QΛ̃QT (5.11)

where Λ̃ =


[

exp
(
− λ1

2`2

)
− 1
]

0 0

0 . . . 0

0 0
[

exp
(
− λd

2`2

)
− 1
]
 and {λi, qi}i=1...d are

eigenvalue/eigenvector pairs of B as discussed in Sec. 5.2.1.

5.3.2 Batch Learning

The batch learning phase consists of these tasks :

5.3.2.1 Clustering.

The first step in the batch phase involves clustering of the batch dataset B into p

individual clusters which represent the manifolds. In case, B contains a single

cluster, the algorithm can correctly detect it. (Line 1)

3Actually B is not always guaranteed to be PSD. [12] use a additive constant to make it
PSD. Equation (5.11) via exponentiation introduces the identity which functions similarly to an
additive constant.
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5.3.2.2 Dimension Reduction.

Subsequently, full Isomap is executed on each of the p individual clusters to

get low-dimensional representations LDE i=1,2...p of the data points belonging

to each individual cluster. (Lines 3–5)

5.3.2.3 Hyper-parameter Estimation.

The geodesic distance matrix for the points in the ith manifold Gi and the cor-

responding low-dimensional representation LDE i, are fed to the GP model for

each of the p manifolds, to perform hyper-parameter estimation, which outputs

{φGP
i }i=1,2...p. (Lines 6–8)

5.3.2.4 Learning Mapping to Global Space.

The low-dimensional embedding uncovered for each of the manifolds can be of

different dimensionalities. Consequently, a mapping to a unified global space is

needed. To learn this mapping, a support set ξs is formulated, which contains

the k pairs of nearest points and l pairs of farthest points, between each pair of

manifolds. Subsequently, MDS is executed on this support set ξs to uncover its

low-dimensional representation GE s. Individual scaling and translation factors

{Ri, ti}i=1,2...p are learnt via solving a least squares problem involving ξs, which

map points from each of the individual manifolds to the global space. (Lines 9–

15)

5.3.3 Stream Processing

In the streaming phase, each sample s in the stream set S is embedded using

each of the p GP models to evaluate the prediction µi, along with the variance

σi (Lines 22–24). The manifold with the smallest variance get chosen to embed

the sample s into, using the corresponding scaling Rj and translation factor tj,

provided mini |σi| is within the allowed threshold σt (Lines 25–28), otherwise

sample s is added to the unassigned set Su (Lines 29–31). When the size of unas-

signed set Su exceeds certain threshold ns, we add them to the batch dataset and
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re-learn the base manifold (Line 18–21). The assimilation of the new points in

the batch maybe done more efficiently in an incremental manner.

5.3.4 Complexity

The runtime complexity of our proposed algorithm is dominated by the GP

regression step as well as the Isomap execution step, both of which have O(n3)

complexity, where n is the size of the batch dataset B. This is similar to the

S-Isomap and S-Isomap++ algorithms, that also have a runtime complexity of

O(n3). The stream processing step is O(n) for each incoming streaming point.

The space complexity of GP-Isomap is dominated by O(n2). This is because

each of the samples of the stream set S get processed separately. Thus, the

space requirement as well as runtime complexity does not grow with the size

of the stream, which makes the algorithm appealing for handling high-volume

streams.

5.4 Theoretical Analysis

In this section, we first state the main result and subsequently prove it using

results from lemmas stated later in Sec. 5.8.

Theorem 5.4.1. The prediction τGP of our proposed approach, GP-Isomap is equivalent
to the prediction τ ISO of S-Isomap i.e. the Procrustes Error εProc

(
τGP, τ ISO

)
between

τGP and τ ISO is 0.

Proof. The prediction of GP-Isomap is given by (5.8). Using Lemma 5.8.5, we

demonstrated that

β = {α
√
λ1q1

1 +αc1

α
√
λ2q2

1 +αc2
. . .
α
√
λdqd

1 +αcd
} (5.12)

The term K∗ for GP-Isomap, using our novel kernel function evaluates to

K∗ = exp
(
−G2

∗
2`2

)
(5.13)
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where G2
∗ represents the vector containing the squared geodesic distances of

xn+1 to X containing {xi}i=1,2...n.

Considering the above equation element-wise, we have that the ith term of

K∗ equates to exp
[
−g2

i,n+1
2`2

]
. Using Taylor’s series expansion we have,

exp

[
−

g2
i,n+1

2`2

]
'
(
1−

g2
i,n+1

2`2

)
for large ` (5.14)

The prediction by the S-Isomap is given by (5.2) as follows :-

τ ISO = {
√
λ1qT

1 f
√
λ2qT

2 f . . .
√
λdqT

d f}T (5.15)

where f = {fi} is as defined by (5.2).

Rewriting (5.2) we have,

fi '
1
2
(
γ − g2

i,n+1
)

(5.16)

where γ =
( 1

n ∑
j

g2
i,j
)

is a constant with respect to xn+1, since it depends only

on squared geodesic distance values associated within the batch dataset B and

xn+1 is part of the stream dataset S .

We now consider the 1st dimension of the predictions for GP-Isomap and S-

Isomap only and demonstrate their equivalence via Procrustes Error. The anal-

ysis for the remaining dimensions follows a similar line of reasoning.

Thus for the 1st dimension, using (5.16) the S-Isomap prediction is

τ ISO1 =
√
λ1qT

1 f

=
√
λ1

n

∑
i=1

q1,i
(1

2
(
γ − g2

i,n+1
))

=

√
λ1

2

n

∑
i=1

q1,i
(
γ − g2

i,n+1
) (5.17)

Similarly using Lemma 5.8.5, (5.13) and (5.14), we have that the 1st dimension
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for GP-Isomap prediction is given by,

τGP1 =
α
√
λ1qT

1
1 +αc1

K∗

=
α
√
λ1

1 +αc1

n

∑
i=1

q1,i
(
1−

g2
i,n+1

2`2

) (5.18)

We can observe that τGP1 is a scaled and translated version of τ ISO1. Similarly

for each of the dimensions (1 ≤ i ≤ d), the prediction for the GP-Isomap τGPi

can be shown to be a scaled, rotated and translated version of the prediction

for the S-Isomap τ ISOi. These individual scaling si, rotation ri and translation

ti factors can be represented together by single collective scaling S, rotation R

and translation T factors. Consequently, the Procrustes Error εProc
(
τGP, τ SI

)
is

0. (refer Sect. 5.2.1). �

5.5 Results and Analysis

In this section, we demonstrate the ability of the predictive variance within GP-

Isomap to identify changes in the underlying distribution in the data stream on

synthetically generated datasets as well as on benchmark sensor data sets.

5.5.1 Results on Synthetic Data Sets

Swiss Roll datasets are typically used for evaluating manifold learning algo-

rithms. To evaluate our method on sudden concept-drift, we use the Euler Iso-
metric Swiss Roll dataset [65] consisting of four R2 Gaussian patches having

n = 2000 points from each patch, chosen at random, which are embedded into

R3 using a nonlinear function ψ(·). The points for each of the Gaussian modes

are divided equally into training and test sets. To test incremental concept-drift,
we use the single patch dataset, which consists of a single patch borrowed from

the above, which we use as the training data, along with a uniform distribution

of points for testing. Figures 5.1, 5.3 and 5.4 demonstrates our results on these

datasets.
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Figure 5.3: Using variance to detect concept-drift using the four patches dataset.
The horizontal axis represents time and the vertical axis represents variance of
the stream. Initially, when stream consists of samples generated from known
modes, variance is low, later when samples from an unrecognized mode ap-
pear, variance shoots up. We can also observe the three variance “bands” above
corresponding to the variance levels of the three modes for t ≤ 3000.

5.5.1.1 Gaussian patches on Isometric Swiss Roll

To evaluate our method on sudden concept-drift, we trained our GP-Isomap

model using 3 out of 4 training sets of the Isometric Swiss Roll dataset. Subse-

quently we stream points randomly from the test sets of only these 3 classes

initially and later stream points from the test set of the fourth class, keeping

track of the predictive variance all the while. Fig. 5.3 demonstrates the sudden

increase (see red line) in the variance of the stream when streaming points are

from the fourth class i.e. unknown mode. Thus GP-Isomap is able to detect

concept-drift correctly. The bottom panel of Fig. 5.1 demonstrates the perfor-

mance of S-Isomap++ on this dataset. It fails to map the streaming points of the

unknown mode correctly, given it had not encountered the unknown mode in
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its batch training phase.

To test our proposed approach for detecting incremental concept-drift, we

train our model using the single patch dataset and subsequently observe how

the variance of the stream behaves on the test streaming dataset. The top panel

of Fig. 5.1 shows how gradually variance increases smoothly as the stream grad-

ually drifts away from the Gaussian patch. This shows that GP-Isomap maps

incremental drift correctly. In Sect. 5.4, we proved the equivalence between the

prediction of S-Isomap with that of GP-Isomap, using our novel kernel. In Fig.

5.4, we show empirically via Procrustes Error (PE) that indeed the prediction

of S-Isomap matches that of GP-Isomap, irrespective of size of batch used. PE

for GP-Isomap with the Euclidean distance based kernel remains high irrespec-

tive of the size of the batch, which clearly demonstrates the unsuitability of this

kernel to adequately learn mappings in the low-dimensional space.

5.5.2 Results on Sensor Data Set

The Gas Sensor Array Drift (GSAD) [80] is a benchmark dataset (n = 13910)

available to research communities to develop strategies to dealing with concept-
drift and uses measurements from 16 chemical sensors used to discriminate be-

tween 6 gases (class labels) at various concentrations. We demonstrate the per-

formance of our proposed method on this dataset.

The data was first mean normalized. Data points from the first five classes

were divided into training and test sets. We train our model using the training

data from four out of these five classes. While testing, we stream points ran-

domly from the test sets of these four classes first and later stream points from

the test set of the fifth class. Figure 5.5 demonstrates our results. Our model

can clearly detect concept-drift due to the unknown fifth class by tracking the

variance of the stream, using the running average (red line).

5.6 Related Work

Processing data streams efficiently using standard approaches is challenging in

general, given streams require real-time processing and cannot be stored per-
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Figure 5.4: Procrustes error (PE) between the ground truth with a) GP-Isomap
(orange line) with the geodesic distance based kernel, b) S-Isomap (dashed
green line with dots) and c) GP-Isomap (blue line) using the Euclidean distance
based kernel, for different fractions (f) of data used in the batch B. The behavior
of PE for a) closely matches that for b). However, the PE for GP-Isomap using
the Euclidean distance kernel remains high irrespective of f demonstrating its
unsuitability for manifolds.

manently. Any form of analysis, including detecting concept-drift requires ad-

equate summarization which can deal with the inherent constraints and that

can approximate the characteristics of the stream well. Sampling based strate-

gies include random sampling [81, 9] as well as decision-tree based approaches

[15] which have been used in this context. To identify concept-drift, maintaining

statistical summaries on a streaming “window” is a typical strategy [1, 34, 14].

However, none of these are applicable in the setting of learning a latent repre-

sentation from the data, e.g., manifolds, in the presence of changes in the stream

distribution.

We discuss limitations of existing incremental and streaming solutions that

have been specifically developed in the context of manifold learning, specifi-
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Figure 5.5: Using variance to identify concept-drift for the Gas Sensor Array Drift
dataset. Similar to Fig. 5.3, the introduction of points from an unknown mode
in the stream results in variance increasing drastically as demonstrated by the
mean (red line). The spread of variances for points from known modes (t -
2000) is also smaller, compared to the spread for the points from the unknown
mode (t % 2000).

cally in the context of the Isomap algorithm in Section 5.2. Coupling Isomap

with GP Regression (GPR) has been explored in the past [12, 87], though not in

the context of streaming data. For instance, a Mercer kernel-based Isomap tech-

nique has been proposed [12]. Similarly [87] presented an emulator pipeline

using Isomap to determine a low-dimensional representation, whose output is

fed to a GPR model. The intuition to use GPR for detecting concept-drift is novel

even though the Bayesian non-parametric approach [3], primarily intended for

anomaly detection, comes close to our work in a single manifold setting. Their

choice of the Euclidean distance (in original RD space) based kernel for its co-

variance matrix, can result in high Procrustes error, as shown in Fig. 5.4. Addi-

tionally, their approach does not scale, given it does not use any approximation
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to be able to process the new streaming points “cheaply”.

5.7 Conclusion

We have proposed a streaming Isomap algorithm (GP-Isomap) that can be used

to learn nonlinear low-dimensional representation of high-dimensional data ar-

riving in a streaming fashion. We prove that using a GPR formulation to map

incoming data instances onto an existing manifold is equivalent to using exist-

ing geometric strategies [65, 50]. Moreover, by utilizing a small batch for exact

learning of the Isomap as well as training the GPR model, the method scales lin-

early with the size of the stream, thereby ensuring its applicability for practical

problems. Using the Bayesian inference of the GPR model allows us to esti-

mate the variance associated with the mapping of the streaming instances. The

variance is shown to be a strong indicator of changes in the underlying stream

properties on a variety of data sets. By utilizing the variance, one can devise

re-training strategies that can include expanding the batch data set. While we

have focused on Isomap algorithm in this chapter, similar formulations can be

applied for other NLSDR methods such as LLE [60], etc., and will be explored

as future research.

5.8 Theoretical results related to GP-Isomap
Lemma 5.8.1. The matrix exponential for M for rank

(
M
)
= 1 and symmetric M is

given by
eM = I +

(
eλ1 − 1

)
q1qT

1

where q1 is the first eigenvector of M such that qT
1 q1 = 1 and λ1 is the corresponding

eigenvalue.
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Proof. Given M is symmetric and rank one, M can be written as λ1q1qT
1 .

eM = I +
∞

∑
k=1

1
k !

Mk

= I +
λ1

1 !
q1qT

1 +
λ2

1
2 !

q1qT
1 q1qT

1 + . . .

= I +
(λ1

1 !
+
λ2

1
2 !

+ . . .
)
q1qT

1

= I +
(
eλ1 − 1

)
q1qT

1

(5.19)

�

Lemma 5.8.2. The matrix exponential for M for rank
(
M
)
= d and symmetric M is

given by

eM = I +
d

∑
i=1

(
eλi − 1

)
qiq>i

where {λi}i=1,2...d are the d largest eigenvalues of M and {qi}i=1,2...d are the corre-
sponding eigenvectors such that q>i qj = δi,j.

Proof. Let M be an n× n real matrix. The exponential eM is given by

eM =
∞

∑
k=0

1
k !

Mk = I +
∞

∑
k=1

1
k !

Mk

where I is the identity. Real, symmetric M has real eigenvalues and mutually or-

thogonal eigenvectors i.e. M =
n
∑

i=1
λiqiq>i where {λi}i=1...n are real and q>i qj = δi,j.
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Given M has rank d, we have M =
d
∑

i=1
λiqiq>i .

eM = I +
∞

∑
i=1

1
i !

Mi

= I +
1
1 !
(
λ1q1q>1 + λ2q2q>2 + . . . + λdqdq>d

)
+

1
2 !
(
λ1q1q>1 + λ2q2q>2 + . . . + λdqdq>d

)2
+ . . .

= I +
(λ1

1 !
+
λ2

1
2 !

+ . . .
)
q1q>1 +

(λ2

1 !
+
λ2

2
2 !

+ . . .
)
q2q>2 + . . .

+
(λd

1 !
+
λ2

d
2 !

+ . . .
)
qdq>d

= I +
(
eλ1 − 1

)
q1q>1 +

(
eλ2 − 1

)
q2q>2 + . . . +

(
eλd − 1

)
qdq>d

= I +
d

∑
i=1

(
eλi − 1

)
qiq>i

(5.20)

�

Lemma 5.8.3. The inverse of the Gaussian kernel for rank
(
M
)
= 1 and symmetric M

is given by (
K + σn

2I
)−1

= αI− α
2c1q1q>1
1 +αc1

where q1 is the first eigenvector of M i.e. q>1 q1 = 1, λ1 is the corresponding eigenvalue
and α = 1(

1+σn2
) and c1 =

[
exp

(
− λ1

2`2

)
− 1
]
.

Proof. Using (5.11) for d = 1, we have

(
K + σn

2I
)−1

=
(
I +

[
exp

(
− λ1

2`2

)
− 1
]
q1q>1 + σn

2I
)−1

=
((

1 + σn
2)I + [ exp

(
− λ1

2`2

)
− 1
]
q1q>1

)−1 (5.21)

Representing 1(
1+σn2

) as α and
[

exp
(
− λ1

2`2

)
− 1
]

as c1 and using
(
1 + σn

2)I as
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A, c1q1 as u and q1 as v in the Sherman-Morrison identity [57], we have

(
K + σn

2I
)−1

= αI−
αIc1q1q>1 αI

1 +αc1

= αI−
α2c1q1q>1

1 +αc1

(5.22)

�

Lemma 5.8.4. The inverse of the Gaussian kernel for rank
(
M
)
= d and symmetric M

is given by (
K + σn

2I
)−1

= αI−α2
d

∑
i=1

ciqiq>i
1 +αci

where {λi}i=1,2...d are the d largest eigenvalues of M and {qi}i=1,2...d are the corre-
sponding eigenvectors such that q>i qj = δi,j.

Proof. Using the result of previous lemma iteratively, we get the required result

(
K + σn

2I
)−1

= αI−α2
d

∑
i=1

ciqiq>i
1 +αci

(5.23)

where α = 1(
1+σn2

) and ci =
[

exp
(
− λi

2`2

)
− 1
]
. �

Lemma 5.8.5. The solution for Gaussian Process regression system, for the scenario
when rank

(
M
)
= 1 and for symmetric M is given by

(
K + σn

2I
)−1

y =
α
√
λ1q1

1 +αc1

Proof. Assuming the intrinsic dimensionality of the low-dimensional manifold

to be 1 implies that the inverse of the Gaussian kernel is as defined as in (5.23).
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y is
√
λ1q1 in this case (refer Sect. 5.2.1). Thus we have

(
K + σn

2I
)−1

y =
(
αI−

α2c1q1q>1
1 +αc1

)(√
λ1q1

)
= α
√
λ1q1 −

α2
√
λ1c1q1

1 +αc1

=
α
√
λ1q1

1 +αc1

(5.24)

�

Lemma 5.8.6. The solution for Gaussian Process regression system, for the scenario
when rank

(
M
)
= d and for symmetric M is given by

(
K + σn

2I
)−1

y = {α
√
λ1q1

1 +αc1

α
√
λ2q2

1 +αc2
. . .

α
√
λdqd

1 +αcd
}

Proof. Assuming the intrinsic dimensionality of the low-dimensional manifold

to be d implies that the inverse of the Gaussian kernel is as defined as in (5.24). y

is {
√
λ1q1

√
λ2q2 . . .

√
λdqd} in this case (refer Sect. 5.2.1), where q>i qj = δi,j.

Each of the k dimensions of
(
K + σn

2I
)−1y can be processed independently,

similar to the previous lemma. For the ith dimension, we have,

(
K + σn

2I
)−1

yi =
(
αI−α2

d

∑
j=1

cjqjq>j
1 +αcj

)(√
λiqi

)
= α
√
λiqi −α2

d

∑
j=1

cjqjq>j qi
(√
λi
)

1 +αcj

= α
√
λiqi −

α2
√
λiciqi

1 +αci

=
α
√
λiqi

1 +αci

(5.25)

Thus we get the result,

(
K + σn

2I
)−1

y = {α
√
λ1q1

1 +αc1

α
√
λ2q2

1 +αc2
. . .

α
√
λdqd

1 +αcd
} (5.26)

�



Chapter 6
A generalized Out-of-Sample

Extension (OOSE) framework for

streaming NLSDR

In this chapter, we discuss a generalized Out-of-Sample Extension framework

for streaming NLSDR discussed which can be formulated with different man-

ifold learning algorithms as necessary, and which has the ability to effectively

deal with multiple manifolds. Additionally we discuss a novel manifold learn-

ing algorithm, based on the above framework, apart from that described in

Chapter 4. The rest of the chapter is organized as follows: we describe and

discuss the generalized Out-of-Sample Extension framework in Section 6.1 and

discuss related work in Section 6.2. We describe Streaming-LLE, the proposed

algorithm based on LLE, which is a specific instance of the above framework,

in Section 6.3. We conclude the chapter by demonstrating results for Streaming-

LLE for both synthetic as well as benchmark datasets in Section 6.4.

6.1 A Standard generalized OOSE framework

The skeleton of the S-Isomap++ algorithm (see Algorithm 2 in Section 4.4) moti-

vates a generalized Out-of-Sample Extension framework for streaming NLSDR

for multiple manifolds wherein the main framework remains fixed and the dif-
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ferent constituents which are specific to the manifold learning algorithm can be

plugged in as is appropriate. This generalized framework is outlined in Algo-

rithm 7 below. The algorithm can be said to be parametrized by A, the NLSDR

technique used in the batch phase as well as by OOSA, the possibly “cheap”

Out-of-Sample Extension technique specific to the NLSDR technique A. The S-

Isomap++ algorithm can be thought of as a specific instantiation of Algorithm

7 wherein A is Isomap and OOSA is S-Isomap. In the subsequent section 6.3,

we define a instantiation specific to LLE as well. All methods referred to in the

Algorithm 7 below can be found in Section 4.4 since they are constituents of the

main framework which work similarly for different NLSDR techniques that can

be plugged into the below framework as needed.

The proposed generalized OOSE framework follows a two-phase strategy

similar to that proposed in our earlier work [50], where we first learn exact

manifolds from an initial batch, and subsequently employ a computationally in-

expensive mapping procedure to process the rest of the stream. An error metric

is used to decide on when to switch from expensive and exact learning to inex-

pensive and approximate mapping [65]. We first cluster the batch data and then

apply the NLSDR technique A on each cluster. The resulting low-dimensional

data for the clusters is then stitched together to obtain the data reduced to a low

(and closer to true) dimensionality.

The generalized approach takes a batch data set, B and the streaming data,

S as inputs where B,S ∈ RD. Note that in practical applications, one might not

have data split into batch and streaming parts. In that scenario, one may track

the quality of the output of the batch phase using suitable error metrics [65], and

switch when a reliable solution for the batch is obtained. For simplicity, we will

assume that the optimal batch size has been pre-determined. The processing is

split into two phases: a batch learning phase (Lines 1–12) and a streaming phase

(Lines 13–20). The batch phase can be summarized as :

• Step 1: Cluster samples in B into p clusters (Line 1).

• Step 2: Learn p individual manifolds corresponding to each cluster using

A, the specific manifold learning algorithm and map samples within each

cluster to a low-dimensional representation. (Lines 6–7).
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• Step 3: Map reduced samples from individual manifolds into a global re-

duced space (Lines 8–12).

Clustering separates the batch samples into different individual clusters,

such that each cluster corresponds to one of the multiple manifolds present in

the data. Our intuition for clustering and subsequently processing each of the

clusters separately is based on our thinking that the observed data was gen-

erated by first sampling points from multiple Vi=1,2,...p i.e. convex domains in

Rd Euclidean space1 and subsequently mapping those points nonlinearly us-

ing possibly different φi=1,2,...p to a RD space. Thus to be able to learn the dif-

ferent inverse mappings effectively i.e. the different φ−1
i=1,2,...p which manifold

learning algorithms strive to achieve, we need to be able to cluster the data ap-

propriately. Also note that we do not assume that the number of manifolds (p)

is specified; it is automatically inferred by the clustering framework. In cases

of uneven/low density sampling, the clustering strategy discussed might pos-

sibly generate many small clusters. In such cases, one can try to merge clus-

ters, based on their affinity/closeness to allow the number of clusters to remain

within required limits. Given that the batch samples lie on low-dimensional

and potentially intersecting manifolds, it is evident that the standard clustering

methods, such as K-Means [35], that operate on the observed data in RD, will

fail in correctly identifying the clusters.

The streaming phase, maps each sample in the stream set S onto each of the

p manifolds by using OOSA (Lines 14-17). The nearest manifold is identified

by comparing each reduced representation of the sample to the “center” of each

manifold (Line 18), and choosing the corresponding reduced representation for

the stream sample (Line 19).

6.2 Related Work

[60] proposed the original LLE algorithm for NLSDR and subsequently [64] in
1It is possible that the low-dimensional Euclidean space specific to each manifold is different

i.e. Vi is a convex domain in Rdi space, where di 6= dj. However we can imagine a scenario
where we choose a Rd global space, where d = maxi di from which the different convex Vi were
sampled from. Additionally note that convexity is preserved by linear projections to higher
dimensional spaces thus the convex domains Vi=1,2,...p remain convex in this new space.
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Algorithm 7 A generalized Out-of-Sample Extension framework for streaming
NLSDR for multiple manifolds.

Require: Batch dataset: B, Streaming dataset: S; Parameters: ε, k, l, λ
Ensure: YS : low-dimensional representation for S

. Batch Phase
1: Ci=1,2...p ← FIND CLUSTERS(B, ε)
2: ξs ← ∅

3: for 1 ≤ i ≤ p do
4: LDE i ←A(Ci)
5: end for

6: ξs ←
p⋃

i=1

p⋃
j=i+1

NN(Ci,Cj, k) ∪ FN(Ci,Cj, l)

7: GE s ← MDS(ξs)

8: for 1 ≤ j ≤ p do
9: I ← ξs ∩ Cj

10: A←
[

LDEIj
eT

]
11: Ri, ti ← GEI ,s ×AT(AAT + λI

)−1

12: end for

. Streaming Phase
13: for s ∈ S do
14: for 1 ≤ i ≤ p do
15: yi

s ←OOSA(s,Ci)
16: GE i

s ←Riyi
s + ti

17: end for

18: m← argmini

∣∣yi
s − µ(Ci,Ri, ti)

∣∣
19: YS ← YS ∪ ym

s
20: end for

21: return YS
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their work, proposed two approaches for Out-of-Sample Extensions for LLE.

The first was a simple approach of first determining the local neighborhood for

the new sample and subsequently computing a set of locally linear weights for

the new sample with respect to these set of points in the local neighborhood by

solving a simple least-squares problem. The low-dimensional embedding of the

new sample subsequently gets computed as the linear combination of the low-

dimensional embeddings of the set of points in the local neighborhood using

the weights determined previously. The other approach was learning the func-

tion which maps from the high-dimensional RD Euclidean space of the samples

to the low-dimensional Rd manifold space by conditioning on already encoun-

tered data and their corresponding low-dimensional representations. These ap-

proaches were applicable in general for single manifold scenarios. [27] pro-

posed a technique for dealing with multiple manifolds, however the technique

only works for supervised data for which labels for each training sample was

known beforehand. Additionally, the technique was meant for batch process-

ing and not for Out-of-Sample Extensions. [71, 90] have also proposed Out-of-

Sample Extension approaches for LLE, however again like [64] they are appli-

cable for single manifold scenarios only and not for multiple, possibly inter-

secting manifolds arising due to possibly non-uniform sampling and/or from

multi-modal distributions.

6.3 Methodology

We describe the Streaming-LLE algorithm in this section, which is an specific

instantiation of the generalized methodology discussed in the previous section.

6.3.1 Streaming-LLE or S-LLE

The Streaming-LLE or S-LLE algorithm is described in Algorithm 8. Given it is

a specific instantiation of the generalized Algorithm 7, described in Section 6.1,

we describe below only the sections of the algorithm which are specific to LLE

here. We describe the Out-of-Sample Extension strategy for LLE in Algorithm 9

subsequently.
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The sections specific to LLE in the Streaming LLE algorithm consists of :

6.3.1.1 Dimensionality Reduction

The LLE algorithm is executed on each of the p individual clusters to get low-

dimensional representations LDE i=1,2...p of the data points belonging to each

individual cluster. (Lines 3–5)

6.3.1.2 Out-of-Sample Extension methodology for LLE

The Out-of-Sample Extension methodology described in Algorithm 9 is called

for each streaming sample s ∈ S for each of the p individual manifolds to deter-

mine yi
s, the predicted local embedding for s for the ith manifold. After which,

the rotation and translation factors Ri and ti learnt in the batch learning phase

for the ith manifold are used to map the learnt local embedding into the global

space, where all manifolds reside. (Lines 14–17).

The Out-of-Sample Extension strategy for LLE (refer Algorithm 9), is de-

scribed below :

6.3.1.3 Nearest neighbor selection

The k-nearest neighbors ζs of the streaming sample s in the ith manifold, Ci is

determined in this step, based on the underlying RD Euclidean space. (Line 2)

6.3.1.4 Learn optimal locally linear weights

w∗, the optimal locally linear weights are determined which minimizes the ob-

jective

∥∥∥∥∥(s− ∑
xj∈ζs

wjxj
)∥∥∥∥∥

2

best as possible is learnt i.e. the best linear combi-

nation of the k-nearest neighbors ζs which can explain the streaming sample

s. Subsequently, this optimal linear combination
(

∑
xj∈ζs

w∗j yj
)

is returned. (Line

3–4).
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6.4 Results

In this section, we present results related to the Streaming-LLE algorithm on

synthetically generated datasets as well as on benchmark datasets. We use the

Euler Isometric Swiss Roll dataset [65], a synthetically generated dataset both to

evaluate our algorithm as well as understand the effect of the various parame-

ters on its working. Additionally we use MNIST and the Gas Sensor Array Drift
(GSAD) dataset [80] as benchmark datasets to evaluate our algorithm.

6.4.1 Results on the Euler Isometric Swiss Roll dataset

The Euler Isometric Swiss Roll dataset [65] is a synthetically generated dataset

consisting of four R2 Gaussian patches having n = 2000 points from each patch,

chosen at random, which are embedded into R3 using a nonlinear functionψ(·).
The points for each of the Gaussian modes are divided equally into training and

test sets. Figure 6.4 demonstrates the ground truth for the streaming samples

present in the dataset. Figure 6.5 demonstrates results for the low-dimensional

embeddings uncovered by Streaming-LLE algorithm on this dataset. Compar-

ing with the ground-truth to see how well Streaming-LLE algorithm is able to

recreate it, we can observe that the recreation by Streaming-LLE is pretty good.

We can also compare Figure 6.5, the recreation result by Streaming-LLE with

Figure 4.1e, the recreation result by the S-Isomap++ algorithm, which is an-

other instantiation of the same generalized framework as Streaming-LLE, on

the same dataset. The quality of the results for the S-Isomap++ algorithm seems

to be better, compared to Streaming-LLE algorithm, which can be explained

by the strong linearity assumption for the underlying NLSDR methodology i.e.

LLE for the Streaming-LLE algorithm, which seems to hamper the quality of the

recreation marginally.

6.4.1.1 Effect of different parameters

Here we present results of the effect of changing the different parameters of

the Streaming-LLE algorithm, while keeping all other parameters fixed at optimal
values. Figures 6.1, 6.2, 6.3, demonstrates the effect of parameter λ, k and l
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on the embeddings uncovered by the Streaming-LLE algorithm. While smaller

values of k seems to result in skinny manifolds, larger values of k seems to make

the manifolds more uniform or rounded. Parameter l seems to control how

stretched the manifolds are i.e. larger values of l seem to stretch the manifolds.

Parameter λ seem to control the separability in between the manifolds. Larger

values of λ seem to separate the manifolds more. This can be really useful while

visualization of low-dimensional embedding results for Streaming-LLE i.e. we

can use it to visualize manifolds better on account of their separability.

Figure 6.1: Effect of changing λ on Streaming-LLE. Top Left: λ = 0.005, Top
Right: λ = 0.01, Bottom Left: λ = 0.02, Bottom Right: λ = 0.04

6.4.2 Results on MNIST dataset

The MNIST handwritten digit database consists of 70000 normalized, 28× 28

grayscale images for handwritten digits from ‘0’ to ‘9’. Each image is repre-

sented by a 784-D vector resulting from the normalized, grayscale image. Each
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Figure 6.2: Effect of changing k on Streaming-LLE. Top Left: k = 8, Top Right:
k = 16, Bottom Left: k = 24, Bottom Right: k = 32

of the ten digits has roughly 7000 samples. For our experiment, we consid-

ered the first 5 digits i.e. ‘0’, ‘1’, ‘2’, ‘3’ and ‘4’. We shuffled the instances for

each digit and used n = 1000 instances for each of the 5 digits specified as our

training dataset i.e. for the batch training phase and used m = 1000 instances

for same digits as our test dataset for the streaming phase and computed the

low-dimensional embeddings for them as predicted by the Streaming-LLE al-

gorithm. Figure 6.6 demonstrates the results of this experiment. The uncovered

low-dimensional embeddings by Streaming-LLE for each of the digits are con-

tinuous and individual manifolds are smooth, which is desirable.

6.4.3 Results on Gas Sensor Array Drift dataset

The Gas Sensor Array Drift (GSAD) [80] is a benchmark dataset which contains

13910 measurements from 16 chemical sensors utilized in simulations for drift
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Figure 6.3: Effect of changing l on Streaming-LLE. Top Left: l = 1, Top Right:
l = 2, Bottom Left: l = 4, Bottom Right: l = 8

compensation in a discrimination task of 6 gases at various levels of concen-

trations. The dataset comprises recordings from six distinct pure gaseous sub-

stances, namely Ammonia, Acetaldehyde, Acetone, Ethylene, Ethanol, and Toluene,

each dosed at a wide variety of concentration values ranging from 5 to 1000

ppmv. We demonstrate the performance of our proposed method on this dataset.

The data was first mean normalized. Subsequently, we randomly shuffled the

dataset and used n = 1000 instances from the first five classes as the training

data and used m = 1000 instances from the same five classes as the test data.

We used the training data as the batch dataset for both the S-Isomap++ algo-

rithm as well as the Streaming-LLE algorithm. Subsequently, we computed the

low-dimensional embeddings for test dataset in the streaming phase for both

algorithms. The results for S-Isomap++ are demonstrated in Figure 6.8 and the

results for Streaming-LLE are demonstrated in Figure 6.7. Even though both
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Figure 6.4: The ground truth in R2 for the streaming samples of the Euler Iso-
metric Swiss Roll dataset [65]. The embedding uncovered by different manifold
learning algorithms after mapping the streaming samples to R3 using the non-
linear function φ() is compared to the above.

algorithms i.e. S-Isomap++ and Streaming-LLE are specific instantiations of the

same generalized framework, the low-dimensional embedding uncovered by

Streaming-LLE is very different from that uncovered by S-Isomap++ i.e. while

S-Isomap++ seems to uncover embeddings whose manifolds have smooth sur-

faces, Streaming-LLE seems to uncover individual manifolds which are linear

but disjoint and non-smooth. This is due to the fact that the underlying NLSDR

methodologies for both these algorithms are completely different i.e. Isomap for

the S-Isomap++ algorithm and LLE for the Streaming-LLE algorithm. Isomap
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Figure 6.5: The embedding uncovered by the Streaming-LLE algorithm for the
streaming samples of the Euler Isometric Swiss Roll dataset [65]. The ground
truth is demonstrated in Figure 6.4. The results are pretty similar to the results
for S-Isomap++ (refer Figure 4.1e)

and LLE work under different sets of assumptions and consequently they inter-

pret the input datasets differently.

6.5 Conclusion

In this chapter, we proposed a generalized OOSE framework for streaming

NLSDR, along with a specific instantiation for LLE, proposed as Streaming-

LLE. We also demonstrated results of Streaming-LLE on various synthetic and
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Figure 6.6: Low-dimensional embedding uncovered by the Streaming-LLE al-
gorithm for MNIST digits 0–4. The uncovered low-dimensional embeddings by
Streaming-LLE for each of the digits are continuous and individual manifolds
are smooth, which is desirable.

benchmark datasets and studied how the different parameters of Streaming-

LLE affect embeddings uncovered by the algorithm. We showed how the low-

dimensional embedding uncovered by Streaming-LLE is very different from

that uncovered by S-Isomap++ even though both algorithms are specific instan-

tiations of the same generalized NLSDR framework. We note here that the skele-

ton of the GP-Isomap algorithm (outlined in Algorithm 6) similarly motivates

a non-parametric generalized OOSE framework for streaming NLSDR for mul-

tiple manifolds, wherein the main framework remains fixed and the different
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Figure 6.7: Low-dimensional embedding uncovered by the Streaming-LLE al-
gorithm on the Gas Sensor Array Drift dataset [80]. Each labelled sample is
a 128-D vector consisting of chemical sensor readings for one of the different
gases (Ethanol, Ethylene, Ammonia, Acetaldehyde, Acetone). S-Isomap++ seems to
uncover embeddings whose manifolds have smooth surfaces, while Streaming-
LLE seems to uncover individual manifolds which are linear but disjoint and
non-smooth.

constituents specific to different manifold learning algorithms can be plugged

in as is appropriate. This is part of future research for the current line of work

mentioned in this chapter. We also note that the “manifold-stitching” mecha-

nism proposed in both generalized frameworks via using transformation ma-

trices {Ri, ti}i=1,2...p to map streaming samples from the “localized manifold

spaces” to the “generalized global space”, performed well in our study possibly

since the underlying manifold learning techniques used were Isomap and LLE

which are invariant to these forms of transformations. In future work, wherein

we plan to include other NLSDR methods in our proposed generalized frame-

work, we also plan to investigate “manifold-stitching” procedures which might

be needed by other NLSDR methods to be able to successfully map stream-
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Figure 6.8: Low-dimensional embedding uncovered by the S-Isomap++ algo-
rithm on the Gas Sensor Array Drift dataset [80]. Each labelled sample is a 128-
D vector consisting of chemical sensor readings for one of the different gases
(Ethanol, Ethylene, Ammonia, Acetaldehyde, Acetone). The low-dimensional em-
bedding uncovered by Streaming-LLE is very different from that uncovered by
S-Isomap++ (refer Figure 6.7), even though both algorithms are specific instan-
tiations of the same generalized NLSDR framework.

ing samples from their “localized manifold spaces” to the “generalized global

space”.
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Algorithm 8 STREAMING-LLE

Require: Batch dataset: B, Streaming dataset: S ; Parameters: ε, k, l, λ
Ensure: YS : low-dimensional representation for S

. Batch Phase
1: Ci=1,2...p ← FIND CLUSTERS(B, ε)
2: ξs ← ∅

3: for 1 ≤ i ≤ p do
4: LDE i ← LLE(Ci)
5: end for

6: ξs ←
p⋃

i=1

p⋃
j=i+1

NN(Ci,Cj, k) ∪ FN(Ci,Cj, l)

7: GE s ← MDS(ξs)

8: for 1 ≤ j ≤ p do
9: I ← ξs ∩ Cj

10: A←
[

LDEIj
eT

]
11: Ri, ti ← GEI ,s ×AT(AAT + λI

)−1

12: end for

. Streaming Phase
13: for s ∈ S do
14: for 1 ≤ i ≤ p do
15: yi

s ←OOSLLE (s, Ci,LDE i)
16: GE i

s ←Riyi
s + ti

17: end for

18: m← argmini

∣∣yi
s − µ(Ci,Ri, ti)

∣∣
19: YS ← YS ∪ ym

s
20: end for

21: return YS
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Algorithm 9 Out-of-Sample Extension Methodology for LLE
1: function OOSLLE (s, Ci,LDE i)
2: ζs ← KNN(s, Ci)

3: w∗ ← argmin
w

∥∥∥∥∥(s− ∑
xj∈ζs

wjxj
)∥∥∥∥∥

2

4: return
(

∑
yj∈ζs

w∗j yj
)

5: end function



Chapter 7
Conclusion

Big data is generally difficult to work with, partly due to the inherent lack of

scalability of the different algorithms involved as well as due to the fact that

many state-of-the-art algorithms work in a “batch” mode i.e. they do not work

well with data streams wherein we cannot possibly hope to include the en-

tire stream as part of the training data. Processing data streams efficiently us-

ing standard approaches is also challenging in general, given streams require

real-time processing and additionally cannot be stored permanently. Any form

of analysis in data streams requires adequate summarization which can deal

with the inherent constraints and that can approximate the characteristics of the

stream well. One key insight of the work done in this thesis is that, we can in

general choose to work with/build our model using only a tiny fraction of the

data stream and still be able to learn adequately and effectively depending on the

task at hand, while we choose to process/map the remaining samples of the

data stream in a significantly cost-effective manner. To do this, identifying the

“point of transition” is crucial. We demonstrate theoretically that such a “point

of transition” exists for certain algorithms. Additionally, we provide error met-

rics to practically identify such transition points. This key intuition allowed us

to formulate a generalized Out-of-Sample Extension framework for streaming

NLSDR as part of the work in the thesis, which can be formulated with dif-

ferent manifold learning algorithms as necessary, and which has the ability to

effectively deal with multiple manifolds in a variety of settings resulting from

different challenges i.e. data streams which have underlying multi-modal dis-
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tributions as well as those wherein non-uniform sampling of underlying data

distribution of streams is encountered.

Including other standard state-of-the-art NLSDR methods as part of this gen-

eralized Out-of-Sample Extension framework as well as understanding relation-

ships of our proposed approaches with other members of the NLDR family i.e.

Variational Auto-encoders, Gaussian Process Latent Variable Models and Deep

Gaussian models will be studied as part of future research for the current line

of work.



Bibliography

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approxi-
mating the frequency moments. Journal of Computer sciences, 58(1):137–147,
1999.

[2] S.-H. Bae, J. Y. Choi, J. Qiu, and G. C. Fox. Dimension reduction and visu-
alization of large high-dimensional data via interpolation. In Proceedings of
the 19th ACM international symposium on high performance distributed comput-
ing, pages 203–214. ACM, 2010.

[3] O. Barkan, J. Weill, and A. Averbuch. Gaussian process regression for out-
of-sample extension. In Machine Learning for Signal Processing (MLSP), 2016
IEEE 26th International Workshop on, pages 1–6. IEEE, 2016.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques
for embedding and clustering. In Advances in neural information processing
systems, pages 585–591, 2002.

[5] Y. Bengio, Y. LeCun, et al. Scaling learning algorithms towards ai. Large-
scale kernel machines, 34(5):1–41, 2007.

[6] Y. Bengio, J.-f. Paiement, P. Vincent, O. Delalleau, N. L. Roux, and
M. Ouimet. Out-of-sample extensions for lle, isomap, mds, eigenmaps,
and spectral clustering. In Advances in neural information processing systems,
pages 177–184, 2004.

[7] M. Bernstein, V. De Silva, J. C. Langford, and J. B. Tenenbaum. Graph
approximations to geodesics on embedded manifolds. Technical report,
Technical report, Department of Psychology, Stanford University, 2000.

[8] R. Campana-Olivo and V. Manian. Parallel implementation of nonlinear
dimensionality reduction methods applied in object segmentation using
cuda in gpu. In Proceedings of SPIE, volume 8048, 2011.



102

[9] S. Chaudhuri, R. Motwani, and V. Narasayya. On random sampling over
joins. In ACM SIGMOD Record, volume 28, pages 263–274. ACM, 1999.

[10] F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasilakos, and X. Rong. Data min-
ing for the internet of things: literature review and challenges. International
Journal of Distributed Sensor Networks, 2015.

[11] L. Chen and A. Buja. Local multidimensional scaling for nonlinear dimen-
sion reduction, graph drawing, and proximity analysis. Journal of the Amer-
ican Statistical Association, 104(485):209–219, 2009.

[12] H. Choi and S. Choi. Kernel isomap. Electronics letters, 40(25):1612–1613,
2004.

[13] J. Y. Choi, S.-H. Bae, X. Qiu, and G. Fox. High performance dimension
reduction and visualization for large high-dimensional data analysis. In
Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM Interna-
tional Conference on, pages 331–340. IEEE, 2010.

[14] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statis-
tics over sliding windows. SIAM journal on computing, 31(6):1794–1813,
2002.

[15] P. Domingos and G. Hulten. Mining high-speed data streams. In Proceed-
ings of the sixth ACM SIGKDD international conference on KDD, pages 71–80.
ACM, 2000.

[16] I. L. Dryden and K. V. Mardia. Statistical shape analysis, volume 4. Wiley,
1998.

[17] I. L. Dryden and K. V. Mardia. Statistical Shape Analysis: With Applications
in R. John Wiley & Sons, 2016.

[18] M. Duan, J. Fan, M. Li, L. Han, and S. Huo. Evaluation of dimensionality-
reduction methods from peptide folding–unfolding simulations. Journal of
chemical theory and computation, 9(5):2490–2497, 2013.

[19] E. Elhamifar and R. Vidal. Sparse manifold clustering and embedding. In
Advances in NIPS, pages 55–63, 2011.

[20] M. Fan, H. Qiao, B. Zhang, and X. Zhang. Isometric multi-manifold learn-
ing for feature extraction. In IEEE 12th ICDM, 2012, pages 241–250. IEEE,
2012.

[21] M. Fan, X. Zhang, H. Qiao, and B. Zhang. Efficient isometric multi-
manifold learning based on the self-organizing method. Inf. Sci.,
345(C):325–339, 2016.



103

[22] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using
the nystrom method. IEEE transactions on pattern analysis and machine intel-
ligence, 26(2):214–225, 2004.

[23] Y. Goldberg and Y. Ritov. Local procrustes for manifold embedding: a mea-
sure of embedding quality and embedding algorithms. Machine learning,
77(1):1–25, 2009.

[24] H. Gunawan, O. Neswan, and W. Setya-Budhi. A formula for angles be-
tween subspaces of inner product spaces. Contributions to Algebra and Ge-
ometry, 46(2):311–320, 2005.

[25] J. Ham, D. D. Lee, S. Mika, and B. Schölkopf. A kernel view of the dimen-
sionality reduction of manifolds. In Proceedings of the twenty-first ICML.
ACM, 2004.

[26] J. Ham, D. D. Lee, and L. K. Saul. Semisupervised alignment of manifolds.
In AISTATS, pages 120–127, 2005.

[27] R. Hettiarachchi and J. F. Peters. Multi-manifold lle learning in pattern
recognition. Pattern Recognition, 48(9):2947–2960, 2015.

[28] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for
deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[29] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786):504–507, 2006.

[30] W. Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American statistical association, 58(301):13–30, 1963.

[31] H. Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of educational psychology, 24(6):417, 1933.

[32] H. Huang, L. ten Bosch, B. Cranen, and L. Boves. Phone classification via
manifold learning based dimensionality reduction algorithms. Speech Com-
munication, 76:28–41, 2016.

[33] A. Hyvärinen, J. Karhunen, and E. Oja. Independent component analysis, vol-
ume 46. John Wiley & Sons, 2004.

[34] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and
T. Suel. Optimal histograms with quality guarantees. In VLDB, volume 98,
1998.

[35] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
computing surveys (CSUR), 31(3):264–323, 1999.



104
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