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Motivation
Massive amounts of data

Huge amounts of data is coming from high-performance
high-fidelity numerical simulations, high-resolution scientific
instruments or Internet of Things feeds.

Real-world data is typically a result of complex non-linear
processes, but can often be described by a low-dimensional
manifold.
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Figure: Topology of high-dimensional, massive datasets
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Figure: Morphological parametric trajectories for a nonlinear process.
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Nonlinear Dimension Reduction (NLDR)
Formulation

Definition

Given X = [x1, x2, . . . , xn]>, such that each xi ∈ RD , the task is to
find a corresponding low-dimensional representation, yi ∈ Rd , for
each xi , where d � D.

We assume there exists a function φ : Rd → RD that maps
each data sample yi ∈ Rd to xi ∈ RD .

The goal is to learn the inverse mapping, φ−1, that can be
used to map high-dimensional xi to low-dimensional yi , i.e.
yi = φ−1(xi ).
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Formulation
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Figure: Procrustes error between true and approximate mapping learnt on
increasing number of data points, with and without sampling error.
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Nonlinear Dimension Reduction (NLDR)
Overview & Workflow

NLDR techniques i.e. Isomap, Diffusion Maps, Laplacian
Eigenmaps, Locally Linear Embedding rely on the spectral
decomposition of the feature matrix that captures properties
of the underlying sub-manifold.
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Figure: General NLDR workflow
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Nonlinear Dimension Reduction (NLDR)
Isomap

Definition

A manifold M is a metric space with the following property: if
x ∈M, then there exists some neighborhood U of x and ∃n such
that U is homeomorphic to Rn.

Isomap is a non-linear generalization of the classical Multi
Dimensional Scaling(MDS) algorithm.

The intuition is to perform MDS, not in the input space, but
rather in the geodesic space of the non-linear data manifold.

But there are plenty of challenges to manifold learning.
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Nonlinear Dimension Reduction (NLDR)
Challenges

Widely used manifold learning methods have been designed
for off-line or batch processing.

Standard methods are computationally expensive or
impractical to apply to high-throughput data streams.

Error in manifold learning is not yet completely understood,
making error measurement on streaming data all the more
complex.

Applying Isomap to data streams and formulating the notion
of collective error has not been well studied.
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S-Isomap
Procrustes Analysis

To measure the notion of error, we use Procrustes analysis.

The idea is to align two matrices, A and B, by finding the
optimal translation t, rotation R, and scaling s that minimizes
the Frobenius norm between the two aligned matrices i.e.:

εproc(A,B) = min
R,t,s
‖sRB + t−A‖F . (1)

The above has a closed form solution obtained by performing
SVD on ABT .

We determine how well LDEX represents the low-dimensional
ground truth GTX using the above error metric
εproc(LDEX ,GTX ).
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S-Isomap
Reference Sample Method

Allows us to measure error in the absence of low-dimensional
ground truth.

1 Given dataset X , choose F ⊂ X , a reference set, and two
equal sized sample sets R1,R2 ⊂ X and create two data sets,
D1 and D2, such that Di = F ∪Ri for i = 1, 2.

2 Perform NLDR on each of Di to get different approximations
of F . (Intuitively we learnt mappings φ̂−1

1 and φ̂−1
2 for same

F)

3 Compute reference sample error as:

εrs = εproc(φ̂−1
1 (F), φ̂−1

2 (F)). (2)
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S-Isomap
Experiments using MNIST, Corel, Swiss Roll datasets
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Figure: Demonstration of behavior of error of the Reference Sample
method, as well as the Procrustes Analysis as we increase number of
samples. Notice the similar asymptotic behavior of error.
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S-Isomap
Experiments using MNIST, Corel, Swiss Roll datasets
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Figure: We actually need a much smaller dataset to adequately form a
robust manifold structure !!
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S-Isomap
Algorithm Design

This key intuition allowed us to formulate a much cheaper
means for mapping streaming points to the manifold.

Choose an initial batch set B based on error analysis.

Perform exact Isomap (or other NLDR) on this B to get the
manifold M = LDEB.

Subsequently, map streaming points s ∈ S by matching their
inner products with LDEB to the computed geodesic distances
with the k nearest neighbors of s.
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S-Isomap
Proposed Algorithm

Algorithm 1 input: Gb, Xb, Yb, xs , k

1: kNN, kDist ← KNN(xs , Xb, k)
2: for 1 ≤ i ≤ n do
3: gi ← min1≤j≤k{kDistj + GbkNNj ,i

}
4: end for
5:

6: c← 1
2 (ḡ · 1n − g − ¯̄Gb · 1n + Ḡb)

7: p← (Y>b Yb)−1Y>b c

8: Ŷ ← [Yb;p]

9: ys ← p− ¯̂Y
10: return ys
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S-Isomap
Performance analysis

Method Time Complexity

OOSE (non-incremental) O(m ∗ (n2 log(n) + n2k))

OOSE (incremental) O(
∑m+n

i=1 (iD + i2 log(i) + i2k))
S-Isomap O(n3 +mn(D + d2 + k))

Table: n = |B|, m = |S|, n� m

OOSE above refers to the out-of-sample-extension technique
proposed by Law and Jain (2006). S-Isomap requires
O(max(n2, nd)) space for operation.
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S-Isomap
Results for Euler Isometric Swiss Roll
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Figure: The results illustrate that the error due to streaming points is low
as well as similar asymptotic behavior.
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S-Isomap
Timing results
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Figure: Timing results for S-Isomap. Results are in log scale and
demonstrate the performance gain achieved.
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Summary & Future work
Summary

We studied & formulated the notion of error metrics for
manifold learning techniques and quantify them, as well as we
devise a technique to deal with scenarios wherein ground truth
is unavailable to help quantify the error.

We demonstrate that it is possible to learn a robust, stable
manifold using only a subset of dataset.

Consequently, we propose a novel efficient algorithm, suitable
for high-volume and high-throughput stream processing, to
incorporate streamed data into a stable manifold.
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Future work

S-Isomap is able to deal with uniform, unimodal distributions.
We are currently working to extend this work to deal with
non-uniform as well as potentially multi-modal distributions.

Theoretical analysis to provide bounds on |B|.
Multi-manifold extensions which can work in parallel and thus
improve efficiency.

Frank Schoeneman*, Suchismit Mahapatra*, Varun Chandola, Nils Napp, Jaroslaw ZolaError Metrics for Learning Reliable Manifolds from Streaming Data


	Motivation
	Massive amounts of data
	Nonlinear Process Dynamics

	Nonlinear Dimension Reduction
	Formulation
	Overview & Workflow
	Isomap
	Challenges

	S-Isomap
	Notion of Error
	Algorithm
	Performance analysis of S-Isomap
	Results

	Summary & Future work
	Summary
	Future work


