Error Metrics for Learning Reliable Manifolds from Streaming Data

Frank Schoeneman* Suchismit Mahapatra* Varun Chandola Nils Napp Jaroslaw Zola

> Department of Computer Science University at Buffalo

SIAM International Conference on Data Mining 2017

Motivation

Massive amounts of data

- Huge amounts of data is coming from high-performance high-fidelity numerical simulations, high-resolution scientific instruments or Internet of Things feeds.
- Real-world data is typically a result of complex non-linear processes, but can often be described by a low-dimensional manifold.

Motivation

Massive amounts of data

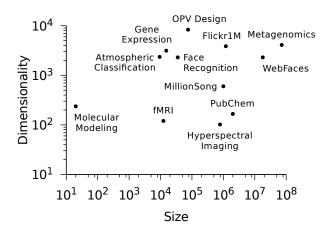


Figure: Topology of high-dimensional, massive datasets

Motivation

Nonlinear Process Dynamics

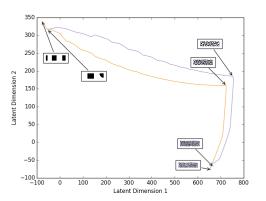


Figure: Morphological parametric trajectories for a nonlinear process.

Formulation

Definition

Given $X = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]^\top$, such that each $\mathbf{x}_i \in \mathbb{R}^D$, the task is to find a corresponding low-dimensional representation, $\mathbf{y}_i \in \mathbb{R}^d$, for each \mathbf{x}_i , where $d \ll D$.

- We assume there exists a function $\phi: \mathbb{R}^d \to \mathbb{R}^D$ that maps each data sample $\mathbf{y}_i \in \mathbb{R}^d$ to $\mathbf{x}_i \in \mathbb{R}^D$.
- The goal is to learn the inverse mapping, ϕ^{-1} , that can be used to map high-dimensional \mathbf{x}_i to low-dimensional \mathbf{y}_i , i.e. $\mathbf{y}_i = \phi^{-1}(\mathbf{x}_i)$.

Formulation

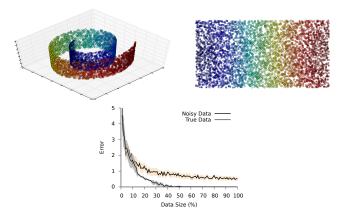


Figure: Procrustes error between true and approximate mapping learnt on increasing number of data points, with and without sampling error

Overview & Workflow

 NLDR techniques i.e. Isomap, Diffusion Maps, Laplacian Eigenmaps, Locally Linear Embedding rely on the spectral decomposition of the feature matrix that captures properties of the underlying sub-manifold.

Figure: General NLDR workflow

Definition

A manifold \mathcal{M} is a metric space with the following property: if $x \in \mathcal{M}$, then there exists some neighborhood \mathcal{U} of x and $\exists n$ such that \mathcal{U} is homeomorphic to \mathbb{R}^n .

Definition

A manifold \mathcal{M} is a metric space with the following property: if $x \in \mathcal{M}$, then there exists some neighborhood \mathcal{U} of x and $\exists n$ such that \mathcal{U} is homeomorphic to \mathbb{R}^n .

- Isomap is a non-linear generalization of the classical Multi Dimensional Scaling(MDS) algorithm.
- The intuition is to perform MDS, not in the input space, but rather in the geodesic space of the non-linear data manifold.
- But there are plenty of challenges to manifold learning.

Nonlinear Dimension Reduction (NLDR) Challenges

- Widely used manifold learning methods have been designed for off-line or batch processing.
- Standard methods are computationally expensive or impractical to apply to high-throughput data streams.
- Error in manifold learning is not yet completely understood, making error measurement on streaming data all the more complex.
- Applying Isomap to data streams and formulating the notion of collective error has not been well studied.

Procrustes Analysis

- To measure the notion of error, we use Procrustes analysis.
- The idea is to align two matrices, \mathcal{A} and \mathcal{B} , by finding the optimal translation t, rotation \mathcal{R} , and scaling s that minimizes the Frobenius norm between the two aligned matrices i.e.:

$$\epsilon_{proc}(\mathcal{A}, \mathcal{B}) = \min_{\mathcal{R}, t, s} ||s\mathcal{R}\mathcal{B} + t - \mathcal{A}||_{\mathcal{F}}.$$
 (1)

- The above has a closed form solution obtained by performing SVD on \mathcal{AB}^T .
- We determine how well $LDE_{\mathcal{X}}$ represents the low-dimensional ground truth $GT_{\mathcal{X}}$ using the above error metric $\epsilon_{proc}(LDE_{\mathcal{X}}, GT_{\mathcal{X}})$.

Reference Sample Method

- Allows us to measure error in the absence of low-dimensional ground truth.
- Given dataset \mathcal{X} , choose $\mathcal{F} \subset \mathcal{X}$, a reference set, and two equal sized sample sets $\mathcal{R}_1, \mathcal{R}_2 \subset \mathcal{X}$ and create two data sets, \mathcal{D}_1 and \mathcal{D}_2 , such that $\mathcal{D}_i = \mathcal{F} \cup \mathcal{R}_i$ for i = 1, 2.
- ② Perform NLDR on each of \mathcal{D}_i to get different approximations of \mathcal{F} . (Intuitively we learnt mappings $\hat{\phi}_1^{-1}$ and $\hat{\phi}_2^{-1}$ for same \mathcal{F})
- Ompute reference sample error as:

$$\epsilon_{rs} = \epsilon_{proc}(\hat{\phi}_1^{-1}(\mathcal{F}), \hat{\phi}_2^{-1}(\mathcal{F})). \tag{2}$$

Experiments using MNIST, Corel, Swiss Roll datasets

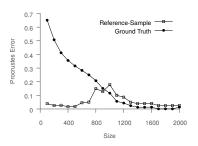


Figure: Demonstration of behavior of error of the Reference Sample method, as well as the Procrustes Analysis as we increase number of samples. Notice the similar asymptotic behavior of error.

Experiments using MNIST, Corel, Swiss Roll datasets

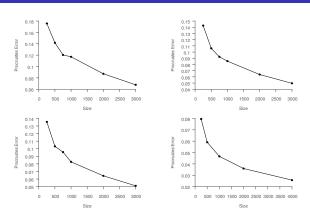


Figure: We actually need a much smaller dataset to adequately form a robust manifold structure!!

S-Isomap Algorithm Design

- This key intuition allowed us to formulate a much cheaper means for mapping streaming points to the manifold.
- ullet Choose an initial batch set ${\cal B}$ based on error analysis.
- Perform exact Isomap (or other NLDR) on this \mathcal{B} to get the manifold $\mathcal{M} = LDE_{\mathcal{B}}$.
- Subsequently, map streaming points $s \in \mathcal{S}$ by matching their inner products with $LDE_{\mathcal{B}}$ to the computed geodesic distances with the k nearest neighbors of s.

Proposed Algorithm

Algorithm 1 input: G_b , X_b , Y_b , \mathbf{x}_s , k

1: **kNN**, **kDist**
$$\leftarrow$$
 KNN(\mathbf{x}_s , X_b , k)

2: **for**
$$1 \le i \le n$$
 do

3:
$$\mathbf{g}_i \leftarrow \min_{1 \leq j \leq k} \{ \mathbf{kDist}_j + G_{b_{\mathbf{kNN}_i,i}} \}$$

5:

6:
$$\mathbf{c} \leftarrow \frac{1}{2}(\bar{\mathbf{g}} \cdot \mathbf{1}_n - \mathbf{g} - \bar{\bar{\mathbf{G}}}_b \cdot \mathbf{1}_n + \bar{\mathbf{G}}_b)$$

7:
$$\mathbf{p} \leftarrow (Y_b^\top Y_b)^{-1} Y_b^\top \mathbf{c}$$

8:
$$\hat{Y} \leftarrow [Y_b; \mathbf{p}]$$

9:
$$\mathbf{y}_s \leftarrow \mathbf{p} - \hat{Y}$$

10: return y_s

Performance analysis

Method	Time Complexity
OOSE (non-incremental)	$\mathcal{O}(m*(n^2\log(n)+n^2k))$
OOSE (incremental)	$\mathcal{O}(\sum_{i=1}^{m+n}(iD+i^2\log(i)+i^2k))$
S-Isomap	$\mathcal{O}(n^{\bar{3}} + mn(D + d^2 + k))$

Table:
$$n = |B|$$
, $m = |S|$, $n \ll m$

OOSE above refers to the out-of-sample-extension technique proposed by Law and Jain (2006). S-Isomap requires $\mathcal{O}(max(n^2,nd))$ space for operation.

Results for Euler Isometric Swiss Roll

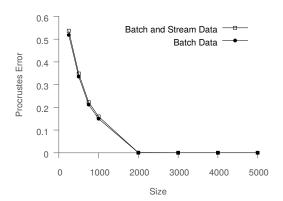
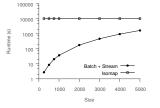


Figure: The results illustrate that the error due to streaming points is low as well as similar asymptotic behavior.

S-Isomap Timing results



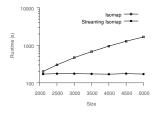


Figure: Timing results for S-Isomap. Results are in log scale and demonstrate the performance gain achieved.

Summary & Future work

- We studied & formulated the notion of error metrics for manifold learning techniques and quantify them, as well as we devise a technique to deal with scenarios wherein ground truth is unavailable to help quantify the error.
- We demonstrate that it is possible to learn a robust, stable manifold using only a subset of dataset.
- Consequently, we propose a novel efficient algorithm, suitable for high-volume and high-throughput stream processing, to incorporate streamed data into a stable manifold.

Summary & Future work

Future work

- S-Isomap is able to deal with uniform, unimodal distributions.
 We are currently working to extend this work to deal with non-uniform as well as potentially multi-modal distributions.
- Theoretical analysis to provide bounds on $|\mathcal{B}|$.
- Multi-manifold extensions which can work in parallel and thus improve efficiency.