S-Isomap++: Multi Manifold Learning from Streaming Data

Suchismit Mahapatra

Department of Computer Science

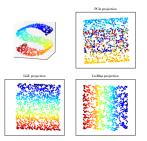
Suchismit Mahapatra

S-Isomap++: Multi Manifold Learning from Sti

Motivation

Massive amounts of data

- Natural data tends to be generated by systems (physical or non-physical) that have very few degrees of underlying freedom.
- Real-world data is typically a result of complex non-linear processes, but can often be described by a low-dimensional manifold.

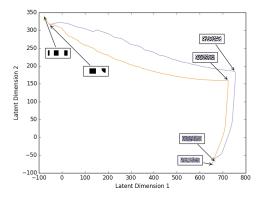


[Credit: Raymond Fu]

Suchismit Mahapatra

Motivation

Nonlinear Process Dynamics

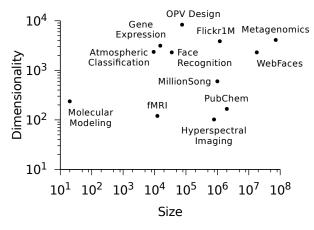


Morphological parametric trajectories for a nonlinear process.

[Click here for simulation of all parametric trajectories][Click here for simulation of Manifold] 🗇 🕨 4 🚊 🕨 4 🚊 👘 🛓 🖉 🖉

Motivation

Massive amounts of data



Topology of high-dimensional, massive datasets

4 T N 4 A N

∃ →

Learning efficiently

Common Approaches

Smoothness

- Try to learn functions that are smooth.
- Examples Spline based techniques, Kernel methods, L₂-regularization, etc.
- Sparsity
 - Represent in terms of sparse/few basis functions.
 - Examples Lasso, Compressive Sensing, Wavelets
- Geometry
 - Data distribution is not uniform, try to exploit geometry.
 - Examples Laplacian based techniques, Manifold learning

Even more relevant in high-dimensional spaces.

Manifold Learning

- Distribution of data not uniform.
- Data lives on/near some low-dimensional manifold, typically embedded in high dimensions and separated by low-density regions.
- Typically used as a generic non-linear, non-parametric technique to approximate probability distributions in high-dimensional spaces.

A (10) + A (10) +

Manifold Properties

Definition

A manifold \mathcal{M} is a metric space with the following property: if $x \in \mathcal{M}$, then there exists some neighborhood \mathcal{U} of x and $\exists n$ such that \mathcal{U} is homeomorphic to \mathbb{R}^n .

A (1) < A (1) < A (1) < A (1) </p>

Manifold Properties

Definition

A manifold \mathcal{M} is a metric space with the following property: if $x \in \mathcal{M}$, then there exists some neighborhood \mathcal{U} of x and $\exists n$ such that \mathcal{U} is homeomorphic to \mathbb{R}^n .

- Global structure can be more complicated.
- Usually embedded in high dimensional spaces, but the intrinsic dimensionality is typically low due to fewer degrees of freedom.
- Examples
 - Collection of news articles
 - Image data sets
 - State space of MDP's

Manifold Caltech 101 Dataset

[Credit: https://lvdmaaten.github.io/tsne/]

イロト イロト イヨト イヨト

Definition

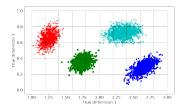
Given $X = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n]^{\top}$, where $\forall \mathbf{x}_i \in \mathbb{R}^D$, the task is to find a corresponding low-dimensional representation, $\mathbf{y}_i \in \mathbb{R}^d$, for each \mathbf{x}_i , where $d \ll D$.

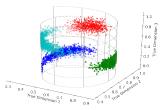
- We assume there exists $\phi : \mathbb{R}^d \to \mathbb{R}^D$ that maps each data sample $\mathbf{y}_i \in \mathbb{R}^d$ to $\mathbf{x}_i \in \mathbb{R}^D$.
- The goal is to learn the inverse mapping, ϕ^{-1} , that can be used to map high-dimensional \mathbf{x}_i to low-dimensional \mathbf{y}_i , i.e. $\mathbf{y}_i = \phi^{-1}(\mathbf{x}_i)$.

A (10) + A (10) +

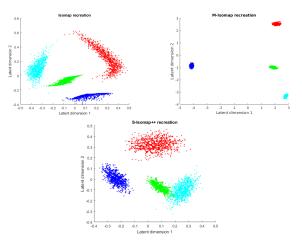
Illustration

Nonlinear Spectral Dimension Reduction





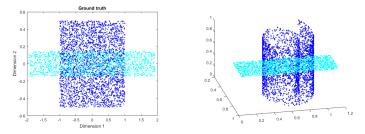
Typical real world scenario wherein we need to learn the inverse mapping, ϕ^{-1} , to be able to uncover the intrinsic low-dimensional representation from high-dimensional data.



How well different algorithms could recreate the latent ground truth used to generate the high-dimensional data.

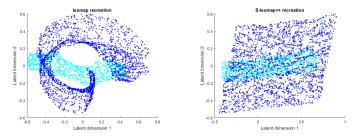
Suchismit Mahapatra

S-Isomap++: Multi Manifold Learning from Sti



Multiple manifolds typically involve dissimilar mappings $\{\phi_i\}_{i=1,2,...p}$ projecting the intrinsic low-dimensional representation to higher dimensional real-world data.

4 6 1 1 4



In an ideal scenario, when manifolds are densely sampled and sufficiently separated, existing NLSDR methods can uncover individual manifolds. But intersecting manifolds are still a challenge.

4 **A b b b b**

S-Isomap++ algorithm

Introduction

The algorithm takes in as input, the batch and streaming data sets, \mathcal{B} and \mathcal{S} respectively and can be divided into two main phases:

- Batch processing phase
 - Cluster samples in \mathcal{B} into p clusters.
 - Learn individual manifolds corresponding to each cluster, and map samples from each cluster to its low-dimensional representation.
 - Map low-dimensional samples from individual manifolds into a global space.
- Stream mapping phase
 - Map each sample *s* from *S* onto each of the *p* manifolds by matching their inner products to the computed geodesic distances with the *k* nearest neighbors, to determine which manifold *s* belongs to.

イロト イロト イヨト イヨト

Batch Processing phase

1: $C_{i=1,2...p} \leftarrow \text{Find}_\text{Clusters}(\mathcal{B}, \epsilon)$ 2: $\xi_{s} \leftarrow \emptyset$ 3: for 1 < i < p do 4: $\mathcal{LDE}_i \leftarrow \mathsf{Isomap}(\mathcal{C}_i)$ 5: end for 6: $\xi_{s} \leftarrow \bigcup^{p} \bigcup^{p} NN(\mathcal{C}_{i}, \mathcal{C}_{j}, \boldsymbol{k}) \cup FN(\mathcal{C}_{i}, \mathcal{C}_{j}, \boldsymbol{l})$ $i=1 \ i=i+1$ 7: $\mathcal{GE}_{s} \leftarrow \mathsf{MDS}(\mathcal{E}_{s})$ 8: for 1 < j < p do 9: $\mathcal{I} \leftarrow \xi_{\mathsf{S}} \cap \mathcal{C}_{\mathsf{i}}$ 10: $\mathcal{A} \leftarrow \begin{bmatrix} \mathcal{LDE}_{j}^{\mathcal{I}} \\ \mathbf{e}^{\mathcal{T}} \end{bmatrix}$ $\mathcal{R}_i, t_i \leftarrow \mathcal{GE}_{\mathcal{I},s} \times \mathcal{A}^T (\mathcal{A}\mathcal{A}^T + \boldsymbol{\lambda} I)^{-1}$ 11: 12: end for

Tangent Manifold Clustering

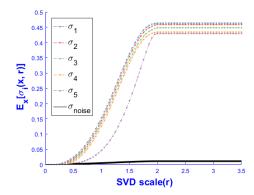
- Multiscale SVD (M-SVD) allows us to estimate the intrinsic dimension of noisy, high-dimensional point clouds.
- M-SVD estimates the intrinsic dimension by computing singular values $\sigma_{i \in \{1,2,...D\}}^{x,r}$ of $\mathcal{B}(x,r)$, $\forall x \in \mathcal{M}$, at different scales r > 0.

A (10) + A (10) +

Tangent Manifold Clustering

- Multiscale SVD (M-SVD) allows us to estimate the intrinsic dimension of noisy, high-dimensional point clouds.
- M-SVD estimates the intrinsic dimension by computing singular values $\sigma_{i \in \{1,2,...D\}}^{x,r}$ of $\mathcal{B}(x,r)$, $\forall x \in \mathcal{M}$, at different scales r > 0.
- Small r leads to not enough samples in $\mathcal{B}(x, r)$.
- Large *r* leads to curvature making the process over estimate the intrinsic dimension.
- True {σ_i^{x,r}} separate from the noise {σ_i^{x,r}} at the right scale, due to their different rates of growth and the intrinsic dimension of *M* gets revealed.

S-lsomap++ Tangent Manifold Clustering



How $\{\sigma_i^{x,r}\}$ behave over different scales when M-SVD is done on a noisy \mathbb{R}^5 sphere embedded in \mathbb{R}^{100} ambient space. Notice how the noise dimensions decay out, leaving only the primary components at the appropriate scale.

Tangent Manifold Clustering

- Executing M-SVD on the local neighborhood of $\forall \mathbf{x}_i \in \mathcal{B}$, allows us to determine basis vectors, $\mathbf{t}_{i1}, \mathbf{t}_{i2}, \ldots, \mathbf{t}_{id'}$, which define the tangent plane, \mathcal{T}_i .
- To determine the similarity between tangent planes T_i and T_j , we tried the following techniques, including two novel approaches :
 - Gunawan's approach : $\phi(\mathcal{T}_i, \mathcal{T}_j) = \cos \theta = |det(\mathcal{N})|$, where $\mathcal{N}_{x,y} = \mathcal{T}_{ix}^{T} \mathcal{T}_{jy}$
 - L_1 -norm based metric : $\phi(\mathcal{T}_i, \mathcal{T}_j) = \frac{1}{k} \sum_{l=1}^k |\mathbf{t}_{il}^\top \mathbf{t}_{jl}|$
 - L₂-norm based metric :

$$\phi(\mathcal{T}_i, \mathcal{T}_j) = \sqrt{\frac{1}{k} \sum_{l=1}^k (\mathbf{t}_{il}^{\top} \mathbf{t}_{jl})^2}$$

Tangent Manifold Clustering

- Incremental in nature.
- Initially all points $\forall \mathbf{x}_i \in \mathcal{B}$ are unlabelled.
- An unlabelled random point **x**_k is picked and is labelled as *l*_k, the next available label index.
- Subsequently, similarity of \mathbf{x}_k with all unlabelled $x \in \mathcal{N}(\mathbf{x}_k)$ is evaluated. If similarity exceeds certain threshold i.e. $\cos \theta \ge \epsilon_{thres}$, points in $\mathcal{N}(\mathbf{x}_k)$ also get labelled as l_k .
- Repeat above, till all points are labelled.

A (10) + A (10) +

Mapping

S-Isomap++

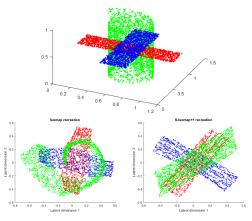
Stream Mapping phase

- 1: for $s \in S$ do
- for 1 < *i* < *p* do 2:
- $y'_{s} \leftarrow S$ -Isomap(s, C_{i}) 3:
- $\mathcal{GE}_{s}^{i} \leftarrow \mathcal{R}_{i} \mathbf{V}_{s}^{i} + \mathbf{t}_{i}$ 4:
- end for 5:
- 6: end for
- 7: index $\leftarrow argmin_i \left| y_s^i \mu(\mathcal{C}_i, \mathcal{R}_i, t_i) \right|$
- 8: $\mathcal{Y}_{\mathcal{S}} \leftarrow \mathcal{Y}_{\mathcal{S}} \cup \mathbf{y}_{\mathcal{S}}^{index}$
- 9: return \mathcal{Y}_{S}

S-Isomap(·) maps points $s \in S$ by matching their inner products with LDE_{C_i} to the computed geodesic distances with the k nearest neighbors of s.

4 同 ト 4 ヨ ト 4 ヨ ト

S-Isomap++ Multiple planes through swiss-roll

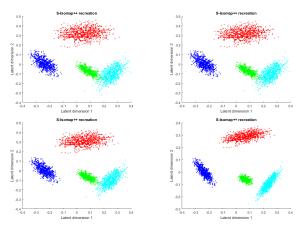


Top: Actual manifolds in \mathbb{R}^3 space, clustered for demonstration, Bottom Left: Recreation by Isomap/M-Isomap, Bottom Row: Recreation by S-Isomap++...

Suchismit Mahapatra

S-Isomap++: Multi Manifold Learning from Sti

S-Isomap++ Effect of varying parameter λ

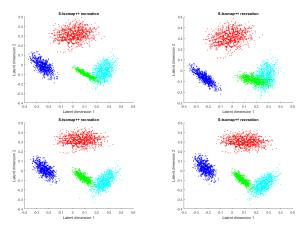


Top Left: $\lambda=$ 0.01, Top Right: $\lambda=$ 0.02, Bottom Left: $\lambda=$ 0.04, Bottom Right: $\lambda=$ 0.16

Suchismit Mahapatra

イロト イポト イヨト イヨト

S-Isomap++ Effect of varying parameter k



Top Left: k = 8, Top Right: k = 16, Bottom Left: k = 24, Bottom Right: k = 32

イロト イロト イヨト イヨト

S-Isomap++ Additional results

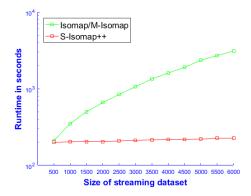
Method	L-1	L-2	Gunawan	
Sphere-Sphere	0.825	0.619	0.5	
Sphere-Plane	0.759	0.602	0.5	
Swiss Roll-Plane	0.838	0.621	0.5	

Accuracy scores for the different tangent manifold clustering approaches.

digit 'o'	0.0296	digit '3'	0.0364	digit '6'	0.0476
digit '1'	0.0806	digit '4'	0.0586	digit '8'	0.0712
digit '2'	0.0499	digit '5'	0.0449	digit '9'	0.0498

Procrustes error values for different digits of MNIST, computed by comparing the original with 3-D recreation via S-Isomap++.

S-lsomap++ Scalability



The results are in log scale and demonstrate the scalability of our proposed algorithm.

H 16

Summary & Future work

- The proposed algorithm allows for scalable non-linear dimensionality reduction of streaming high-dimensional data.
- By allowing for the samples to belong to multiple manifolds, or sampled non-uniformly in a single manifold, our approach can be applied to a wide variety of practical settings.
- The ability to cluster data lying on multiple intersecting manifolds is significant since it allows us to automatically identify the number of underlying manifolds.
- Our algorithm assumes that all manifolds are represented in the batch data set. This means that a novel manifold which might appear subsequently in the stream *S*, does not get learned. We plan to resolve this limitation in our future work.