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Motivation Massive amounts of data

Motivation
Massive amounts of data

Natural data tends to be generated by systems (physical or
non-physical) that have very few degrees of underlying freedom.
Real-world data is typically a result of complex non-linear
processes, but can o�en be described by a low-dimensional
manifold.

[Credit: Raymond Fu]
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Motivation Nonlinear Process Dynamics

Motivation
Nonlinear Process Dynamics

Morphological parametric trajectories for a nonlinear process.

[Click here for simulation of all parametric trajectories][Click here for simulation of Manifold]
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https://www.youtube.com/watch?v=ehN4I1TsBRc
https://www.youtube.com/watch?v=fwT1zJ7VMFc
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Learning e�ciently Common Approaches

Learning e�ciently
Common Approaches

Smoothness
Try to learn functions that are smooth.
Examples - Spline based techniques, Kernel methods,
L2-regularization, etc.

Sparsity
Represent in terms of sparse/few basis functions.
Examples - Lasso, Compressive Sensing, Wavelets

Geometry
Data distribution is not uniform, try to exploit geometry.
Examples - Laplacian based techniques, Manifold learning

Even more relevant in high-dimensional spaces.
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Learning e�ciently Manifold Learning

Manifold Learning
Assumptions

Distribution of data not uniform.
Data lives on/near some low-dimensional manifold, typically
embedded in high dimensions and separated by low-density
regions.
Typically used as a generic non-linear, non-parametric technique
to approximate probability distributions in high-dimensional
spaces.
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Learning e�ciently Manifold Learning

Manifold
Properties

De�nition
A manifoldM is a metric space with the following property: if x ∈M,
then there exists some neighborhood U of x and ∃n such that U is
homeomorphic to Rn.

Global structure can be more complicated.
Usually embedded in high dimensional spaces, but the intrinsic
dimensionality is typically low due to fewer degrees of freedom.
Examples

Collection of news articles
Image data sets
State space of MDP’s
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Learning e�ciently Manifold Learning

Manifold
Caltech 101 Dataset

[Credit: https://lvdmaaten.github.io/tsne/]
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Nonlinear Spectral Dimension Reduction Formulation

Nonlinear Spectral Dimension Reduction
Formulation

De�nition
Given X = [x1, x2, . . . , xn]>, where ∀xi ∈ RD, the task is to �nd a
corresponding low-dimensional representation, yi ∈ Rd, for each xi,
where d� D.

We assume there exists φ : Rd → RD that maps each data sample
yi ∈ Rd to xi ∈ RD.
The goal is to learn the inverse mapping, φ−1, that can be used to
map high-dimensional xi to low-dimensional yi, i.e. yi = φ−1(xi).
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Nonlinear Spectral Dimension Reduction Illustration

Nonlinear Spectral Dimension Reduction
Illustration

Typical real world scenario wherein we need to learn the inverse mapping,
φ−1, to be able to uncover the intrinsic low-dimensional representation
from high-dimensional data.
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Nonlinear Spectral Dimension Reduction Illustration

Nonlinear Spectral Dimension Reduction
Illustration

How well di�erent algorithms could recreate the latent ground truth used to
generate the high-dimensional data.
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Nonlinear Spectral Dimension Reduction Illustration

Nonlinear Spectral Dimension Reduction
Illustration

Multiple manifolds typically involve dissimilar mappings {φi}i=1,2,...p
projecting the intrinsic low-dimensional representation to higher
dimensional real-world data.
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Nonlinear Spectral Dimension Reduction Illustration

Nonlinear Spectral Dimension Reduction
Illustration

In an ideal scenario, when manifolds are densely sampled and su�ciently
separated, existing NLSDR methods can uncover individual manifolds. But
intersecting manifolds are still a challenge.
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S-Isomap++ algorithm Introduction

S-Isomap++ algorithm
Introduction

The algorithm takes in as input, the batch and streaming data sets, B
and S respectively and can be divided into two main phases:

Batch processing phase
Cluster samples in B into p clusters.
Learn individual manifolds corresponding to each cluster, and
map samples from each cluster to its low-dimensional
representation.
Map low-dimensional samples from individual manifolds into a
global space.

Stream mapping phase
Map each sample s from S onto each of the p manifolds by
matching their inner products to the computed geodesic
distances with the k nearest neighbors, to determine which
manifold s belongs to.

Suchismit Mahapatra S-Isomap++: Multi Manifold Learning from Streaming Data 14 / 26



S-Isomap++ algorithm Uncovering individual manifolds

S-Isomap++
Batch Processing phase

1: Ci=1,2...p ← Find Clusters(B, ε)
2: ξs ← ∅
3: for 1 ≤ i ≤ p do
4: LDE i ← Isomap(Ci)
5: end for

6: ξs ←
p⋃

i=1

p⋃
j=i+1

NN(Ci, Cj,k) ∪ FN(Ci, Cj, l)

7: GEs ← MDS(ξs)
8: for 1 ≤ j ≤ p do
9: I ← ξs ∩ Cj

10: A←
[
LDEIj
eT

]
11: Ri, ti ← GEI,s ×AT

(
AAT + λI

)−1
12: end for
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S-Isomap++ algorithm Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

Multiscale SVD (M-SVD) allows us to estimate the intrinsic
dimension of noisy, high-dimensional point clouds.
M-SVD estimates the intrinsic dimension by computing singular
values σx,ri∈{1,2,...D} of B(x, r), ∀x ∈M, at di�erent scales r > 0.

Small r leads to not enough samples in B(x, r).
Large r leads to curvature making the process over estimate the
intrinsic dimension.
True {σx,ri } separate from the noise {σx,ri } at the right scale, due
to their di�erent rates of growth and the intrinsic dimension of
M gets revealed.
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S-Isomap++ algorithm Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

How {σx,ri } behave over di�erent scales when M-SVD is done on a noisy R
5

sphere embedded in R100 ambient space. Notice how the noise dimensions
decay out, leaving only the primary components at the appropriate scale.
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S-Isomap++ algorithm Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

Executing M-SVD on the local neighborhood of ∀xi ∈ B, allows us
to determine basis vectors, ti1, ti2, . . . , tid′ , which de�ne the
tangent plane, Ti.
To determine the similarity between tangent planes Ti and Tj, we
tried the following techniques, including two novel approaches :

Gunawan’s approach :
φ(Ti, Tj) = cos θ = |det(N )|, where Nx,y = TixTTjy
L1-norm based metric :
φ(Ti, Tj) = 1

k
∑k

l=1 |t>il tjl|

L2-norm based metric :
φ(Ti, Tj) =

√
1
k
∑k

l=1(t>il tjl)2
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S-Isomap++ algorithm Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

Incremental in nature.
Initially all points ∀xi ∈ B are unlabelled.
An unlabelled random point xk is picked and is labelled as lk, the
next available label index.
Subsequently, similarity of xk with all unlabelled x ∈ N (xk) is
evaluated. If similarity exceeds certain threshold i.e.
cos θ ≥ εthres, points in N (xk) also get labelled as lk.
Repeat above, till all points are labelled.
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S-Isomap++ algorithm Mapping

S-Isomap++
Stream Mapping phase

1: for s ∈ S do
2: for 1 ≤ i ≤ p do
3: yis ← S-Isomap(s, Ci)
4: GE is ←Riyis + ti
5: end for
6: end for
7: index← argmini

∣∣∣yis − µ(Ci,Ri, ti)∣∣∣
8: YS ← YS ∪ yindexs
9: return YS
S-Isomap(·) maps points s ∈ S by matching their inner products with LDECi
to the computed geodesic distances with the k nearest neighbors of s.
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S-Isomap++ algorithm Results

S-Isomap++
Multiple planes through swiss-roll

Top: Actual manifolds in R3 space, clustered for demonstration, Bottom Le�:
Recreation by Isomap/M-Isomap, Bottom Row: Recreation by S-Isomap++.
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S-Isomap++ algorithm Results

S-Isomap++
E�ect of varying parameter λ

Top Le�: λ = 0.01, Top Right: λ = 0.02, Bottom Le�: λ = 0.04, Bottom Right:
λ = 0.16
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S-Isomap++ algorithm Results

S-Isomap++
E�ect of varying parameter k

Top Le�: k = 8, Top Right: k = 16, Bottom Le�: k = 24, Bottom Right: k = 32
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S-Isomap++ algorithm Results

S-Isomap++
Additional results

Method L-1 L-2 Gunawan
Sphere-Sphere 0.825 0.619 0.5
Sphere-Plane 0.759 0.602 0.5
Swiss Roll-Plane 0.838 0.621 0.5

Accuracy scores for the di�erent tangent manifold clustering approaches.

digit ‘0’ 0.0296 digit ‘3’ 0.0364 digit ‘6’ 0.0476
digit ‘1’ 0.0806 digit ‘4’ 0.0586 digit ‘8’ 0.0712
digit ‘2’ 0.0499 digit ‘5’ 0.0449 digit ‘9’ 0.0498

Procrustes error values for di�erent digits of MNIST, computed by
comparing the original with 3-D recreation via S-Isomap++.
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S-Isomap++ algorithm Results

S-Isomap++
Scalability

The results are in log scale and demonstrate the scalability of our proposed
algorithm.
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S-Isomap++ algorithm Results

Summary & Future work

The proposed algorithm allows for scalable non-linear
dimensionality reduction of streaming high-dimensional data.
By allowing for the samples to belong to multiple manifolds, or
sampled non-uniformly in a single manifold, our approach can
be applied to a wide variety of practical settings.
The ability to cluster data lying on multiple intersecting
manifolds is signi�cant since it allows us to automatically
identify the number of underlying manifolds.
Our algorithm assumes that all manifolds are represented in the
batch data set. This means that a novel manifold which might
appear subsequently in the stream S , does not get learned. We
plan to resolve this limitation in our future work.
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