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Motivation Massive amounts of data

Motivation

Massive amounts of data

@ Natural data tends to be generated by systems (physical or
non-physical) that have very few degrees of underlying freedom.

@ Real-world data is typically a result of complex non-linear
processes, but can often be described by a low-dimensional
manifold.
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Motivation Nonlinear Process Dynamics

Motivation

Nonlinear Process Dynamics
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Morphological parametric trajectories for a nonlinear process.
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https://www.youtube.com/watch?v=ehN4I1TsBRc
https://www.youtube.com/watch?v=fwT1zJ7VMFc
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Motivation

Massive amounts of data
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Topology of high-dimensional, massive datasets
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Learning efficiently Common Approaches

Learning efficiently

Common Approaches

@ Smoothness
e Try to learn functions that are
e Examples - Spline based techniques, Kernel methods,
L,-regularization, etc.

@ Sparsity
@ Represent in terms of basis functions.
e Examples - Lasso, Compressive Sensing, Wavelets
@ Geometry
o Data distribution is , try to

e Examples - Laplacian based techmques Manifold learnlng

Even more in high-dimensional spaces.
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Learning efficiently Manifold Learning

Manifold Learning

Assumptions

@ Distribution of data .
@ Data some low-dimensional manifold, typically

in high dimensions and by
@ Typically used as a generic
to probability distributions in high-dimensional
spaces.
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Learning efficiently Manifold Learning

Manifold

Properties

Definition
A manifold M is a metric space with the following property: if z € M,
then there exists some neighborhood ¢/ of x and 3n such that i/ is

homeomorphic to R™.
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Learning efficiently Manifold Learning

Manifold

Properties

Definition
A manifold M is a metric space with the following property: if z € M,
then there exists some neighborhood ¢/ of x and 3n such that i/ is

homeomorphic to R™.

o structure can be more

@ Usually embedded in high dimensional spaces, but the
is typically low due to

@ Examples
@ Collection of news articles
o Image data sets
o State space of MDP’s
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Manifold

Learning efficiently Manifold Learning
Caltech 101 Dataset

[Credit: https://lvdmaaten.github.io/tsne/]
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Nonlinear Spectral Dimension Reduction Formulation

Nonlinear Spectral Dimension Reduction

Formulation

Definition

Given X = [X;, X, ..., Xp] ", where vx; € RP, the task is to find a
corresponding low-dimensional representation, y; € RY, for each x;,
where d < D.

@ We assume there exists ¢ : R? — RP that maps each data sample
yi € R9 to x; € RO,

@ The goal isto learn the inverse mapping, ¢~ ', that can be used to
map high-dimensional x; to low-dimensional y;, i.e. y; = ¢~ "(X;).
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Nonlinear Spectral Dimension Reduction Illustration

Nonlinear Spectral Dimension Reduction

Illustration
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Typical real world scenario wherein we need to learn the inverse mapping,
¢, to be able to uncover the intrinsic low-dimensional representation

from high-dimensional data.
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Nonlinear Spectral Dimension Reduction Illustration

Nonlinear Spectral Dimension Reduction

Illustration

Isomap recreation M-Isomap recreation
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How well different algorithms could recreate the latent ground truth used to
generate the high-dimensional data.

Suchismit Mahapatra S-Isomap++: Multi Manifold Learning from Sti 11/ 26



Nonlinear Spectral Dimension Reduction Illustration

Nonlinear Spectral Dimension Reduction

Illustration
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Multiple manifolds typically involve dissimilar mappings {;}iz,,..
projecting the intrinsic low-dimensional representation to higher
dimensional real-world data.
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Nonlinear Spectral Dimension Reduction Illustration

Nonlinear Spectral Dimension Reduction

Illustration

Ssomap++ recreation
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In an ideal scenario, when manifolds are densely sampled and sufficiently
separated, existing NLSDR methods can uncover individual manifolds. But
intersecting manifolds are still a challenge.
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S-Isomap++ algorithm Introduction

S-Isomap++ algorithm

Introduction

The algorithm takes in as input, the batch and streaming data sets, B
and S respectively and can be divided into two main phases:

@ Batch processing phase

° samples in B into p clusters.
° individual manifolds corresponding to each cluster, and
samples from each cluster to its low-dimensional
representation.
° low-dimensional samples from individual manifolds into a
global space.

@ Stream mapping phase

° each sample s from S onto each of the p manifolds by
to the computed geodesic
distances with the k nearest neighbors, to determine which
manifold s belongs to.
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S-Isomap++ algorithm Uncovering individual manifolds

S-Isomap++
Batch Processing phase
1: Ciz12..p < Find_Clusters(B, €)
&< 0
for1<i<pdo
LDE; + Isomap(C;)
end for
6: s < ij ij NN(C,,C,-,k) U FN(C,-,Cj,l)
i=1j=i+1
7. GEs < MDS(&s)
8: for1<j<pdo

N

T
100 A<« [ /;Dng }
e
11: R,‘, t,' — QSI,S X .AT (.A.AT + )\I) -
12: end for
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S-Isomap++ algorithm Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

@ Multiscale SVD (M-SVD) allows us to the
of noisy, high-dimensional point clouds.

@ M-SVD estimates the intrinsic dimension by

012, py OF B(X,r), Vx € M, at different r>o.
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S-Isomap++ algorithm Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

@ Multiscale SVD (M-SVD) allows us to the
of noisy, high-dimensional point clouds.

@ M-SVD estimates the intrinsic dimension by

U?(e’r{xz,...o} of B(x,r), ¥x € M, at different r>o.
@ Small r leads to in B(x,r).
@ Large r leads to making the process the
intrinsic dimension.
@ True {0""} separate from the noise {0}"'} at the , due
to their and the intrinsic dimension of

M gets revealed.
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S-Isomap++ algorithm Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering
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How {o""} behave over different scales when M-SVD is done on a noisy R®
sphere embedded in R'™° ambient space. Notice how the noise dimensions
decay out, leaving only the primary components at the appropriate scale.
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S-Isomap++ algorithm Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

@ Executing M-SVD on the local neighborhood of Vx; € B, allows us
to determine basis vectors, t;;, t;,, .. ., t;, which define the
tangent plane, 7.

@ To determine the similarity between tangent planes 7; and 7;, we
tried the following techniques, including two novel approaches :

&(T;, Tj) = cosb = |det(N)|, where N, = 7,7XT7,7y

ST T)) = 3 S, It
(T T) = /1 S (4 )2
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S-Isomap++ algorithm Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

° in nature.

° VX; € B are .

@ An point x,, is picked and is as ly, the
next available label index.

@ Subsequently, of X, with all unlabelled x € N(x;) is
evaluated. If similarity i.e.
cos 0 > €tnres, POINts in N(Xg) also get as lp.

° above, till all points are labelled.
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S-Isomap++ algorithm Mapping

S-Isomap++
Stream Mapping phase

: fors e Sdo
for1<i<pdo
yL + S-lsomap(s, C;)
GES — Riys + 1
5:  end for
6: end for

7. index « argmin; |yL — 1u(Ci, Rj, t;)

8 Vs « Vs Uyinder
9o: return )s

£ ®w N2

S-lsomap(-) points s € S by with LDE,
to the computed geodesic distances with the k nearest neighbors of s.
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S-Isomap++ algorithm Results

S-Isomap++

Multiple planes through swiss-roll

Sisomap++ recreation
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Latent dimension 2
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Top: Actual manifolds in R3 space, clustered for demonstration, Bottom Left:
Recreation by Isomap/M-Isomap, Bottom Row: Recreation by S-Isomap++.
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S-Isomap++ algorithm Results

S-Isomap++

Effect of varying parameter \

S-isomap+ recreation SHisomap++ recreation
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S-isomap+ recreation S-isomap++ recreation
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Top Left: A = 0.01, Top Right: A = 0.02, Bottom Left: A = 0.04, Bottom Right:
A =0.16
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S-Isomap++ algorithm Results

S-Isomap++

Effect of varying parameter k
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Top Left: k = 8, Top Right: k = 16, Bottom Left: k = 24, Bottom Right: k = 32
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S-Isomap++ algorithm

S-Isomap++

Additional results

Results

Method L-1 -2 | Gunawan
Sphere-Sphere | 0.825 | 0.619 0.5
Sphere-Plane | 0.759 | 0.602 0.5
Swiss Roll-Plane | 0.838 | 0.621 0.5

digit ‘0’ | 0.0296 || digit ‘3’ | 0.0364 | digit ‘6’ | 0.0476
digit ‘1’ | 0.0806 || digit 4’ | 0.0586 || digit ‘8’ | 0.0712
digit 2’ | 0.0499 || digit 5’ | 0.0449 || digit ‘9’ | 0.0498
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S-Isomap++ algorithm Results

S-Isomap++
Scalability
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The results are in log scale and demonstrate the scalability of our proposed
algorithm.
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S-Isomap++ algorithm Results

Summary & Future work

@ The proposed algorithm allows for non-linear
dimensionality reduction of .

@ By allowing for the samples to belong to manifolds, or
sampled in a single manifold, our approach can
be applied to a of settings.

@ The ability to data lying on
manifolds is since it allows us to
identify the number of manifolds.

@ Our algorithm that all manifolds are represented in the

batch data set. This means that a novel manifold which might
subsequently in the stream S, does not get learned. We
plan to this limitation in our
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