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Manifold Learning In Streams Motivation

Manifold Learning In Streams
Motivation

Understanding the structure of multidimensional patterns is of
primary importance.
Processing data streams, potentially in�nite requires adequate
summarization which can handle inherent constraints and
approximate characteristics well.
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Manifold Learning In Streams Massive amounts of data

Manifold Learning In Streams
Massive amounts of data

Natural data tends to be generated by systems (physical or
non-physical) that have very few degrees of underlying freedom.
Real-world data is typically a result of complex non-linear
processes, but can o�en be described by a low-dimensional
manifold.

[Credit: Raymond Fu]
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Manifold Learning In Streams Nonlinear Process Dynamics

Manifold Learning In Streams
Nonlinear Process Dynamics

Morphological parametric trajectories for a nonlinear process.

[Click here for simulation of all parametric trajectories][Click here for simulation of Manifold]
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https://www.youtube.com/watch?v=ehN4I1TsBRc
https://www.youtube.com/watch?v=fwT1zJ7VMFc


Manifold Learning In Streams Challenges Involved

Manifold Learning In Streams
Challenges Involved

Curse of dimensionality combined with lack of scalability of
algorithms makes data analysis di�cult/inadequate.
Cannot use entire streams as training data motivates
Out-of-Sample Extension (OOSE) techniques.
Need to formalize “collective error” in NLSDR methods and
strategies to quantify it.
Dealing with intersecting manifolds.
Need to handle concept dri� i.e. changes in stream properties.
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Learning e�ciently Common Approaches

Learning e�ciently
Common Approaches

Smoothness
Try to learn functions that are smooth.
Examples - Spline based techniques, Kernel methods,
L2-regularization, etc.

Sparsity
Represent in terms of sparse/few basis functions.
Examples - Lasso, Compressive Sensing, Wavelets

Geometry
Data distribution is not uniform, try to exploit geometry.
Examples - Laplacian based techniques, Manifold learning

Even more relevant in high-dimensional spaces.
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Manifold Learning Assumptions

Manifold Learning
Assumptions

Distribution of data not uniform.
Data lives on/near some low-dimensional manifold, typically
embedded in high dimensions and separated by low-density
regions.
Typically used as a generic non-linear, non-parametric
technique to approximate probability distributions in
high-dimensional spaces.
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Manifold Properties

Manifold
Properties

De�nition
A manifoldM is a metric space with the following property: if
x ∈M, then there exists some neighborhood U of x and ∃n such that
U is homeomorphic to Rn.

Global structure can be more complicated.
Usually embedded in high dimensional spaces, but the intrinsic
dimensionality is typically low due to fewer degrees of freedom.
Examples

Set of queries/product descriptions
Image data sets
State space of MDP’s
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Manifold Caltech 101 Dataset

Manifold
Caltech 101 Dataset

[Credit: https://lvdmaaten.github.io/]
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Nonlinear Spectral Dimension Reduction Formulation

Nonlinear Spectral Dimension Reduction
Formulation

De�nition
Given X = [x1, x2, . . . , xn]>, where ∀xi ∈ RD, the task is to �nd a
corresponding low-dimensional representation, yi ∈ Rd, for each xi,
where d� D.

We assume there exists φ : Rd → RD that maps each data sample
yi ∈ Rd to xi ∈ RD.
The goal is to learn the inverse mapping, φ−1, that can be used to
map high-dimensional xi to low-dimensional yi, i.e. yi = φ−1(xi).
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Nonlinear Spectral Dimension Reduction Overview & Work�ow

Nonlinear Spectral Dimension Reduction
Overview & Work�ow

NLSDR techniques i.e. Isomap, Di�usion Maps, Laplacian
Eigenmaps, Locally Linear Embedding rely on the spectral
decomposition of the feature matrix that captures properties of
the underlying sub-manifold.

High dimensional
Data

KNN
Search

Neighborhood
Graph

Feature
Matrix

Eigenvectors
Eigenvalues

KNN Graph
Analysis Eigensolver

Low-dimensional
Embedding

Dimensionality
Estimation

n×D matrix n×k matrix n×n matrix n×d matrix

General NLSDR work�ow

Suchismit Mahapatra Scalable Nonlinear Spectral Dimensionality Reduction (NLSDR) Methods For Streaming Data11 / 55



Nonlinear Spectral Dimension Reduction Illustration

Nonlinear Spectral Dimension Reduction
Illustration

PCA on a simple data set and the intrinsic dimensionality it uncovers, even
a�er using Fourier transformation.

[Credit: Mauro Maggioni]
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Nonlinear Spectral Dimension Reduction Isomap

Nonlinear Spectral Dimension Reduction
Isomap

Isomap is a non-linear generalization of the classical Multi
Dimensional Scaling (MDS) algorithm.
The intuition is to perform MDS, not in the input space, but
rather in the geodesic space of the non-linear data manifold.
But there are plenty of challenges to manifold learning.
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S-Isomap Notion of Error

S-Isomap
Notion of Error

To measure the notion of error, we use Procrustes analysis.
The idea is to align matrices, A and B, by �nding the optimal
translation t, rotation R, and scaling s that minimizes the
Frobenius norm between A and B :

εproc(A,B) = min
R,t,s
‖sRB + t−A‖F.

The above has a closed form solution obtained by performing
SVD on ABT .
We determine how well LDEX represents the low-dimensional
ground truth GTX using εproc(LDEX ,GTX ).
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S-Isomap Notion of Error

S-Isomap
Notion of Error
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Procrustes error between the true and approximate mapping learnt with
and without sampling error.
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S-Isomap Notion of Error

S-Isomap
Experiments using MNIST, Corel, Swiss Roll datasets
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We actually need a much smaller dataset to adequately form a robust
manifold structure !!
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S-Isomap Algorithm

S-Isomap
Algorithm Design

This key intuition allowed us to formulate a much cheaper means for
mapping streaming points to the manifold.

1 Choose an initial batch set B based on error analysis.
2 Perform exact Isomap (or other NLSDR) on B to get the manifold
M = LDEB.

3 Subsequently, map streaming points s ∈ S by matching their
inner products with LDEB to the computed geodesic distances
with the k nearest neighbors of s.
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S-Isomap Algorithm

S-Isomap
Proposed Algorithm

Input: Gb, Xb, Yb, xs, k
Output: ys
1: kNN, kDist← KNN(xs, Xb, k)
2: for 1 ≤ i ≤ n do
3: gi ← min1≤j≤k{kDistj + GbkNNj,i}
4: end for
5:
6: c← 1

2(ḡ · 1n − g− ¯̄Gb · 1n + Ḡb)
7: p← (Y>b Yb)−1Y>b c
8: Ŷ ← [Yb;p]

9: ys ← p− ¯̂Y
10: return ys
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S-Isomap Performance analysis of S-Isomap

S-Isomap
Performance analysis

Method Time Complexity
OOSE (non-incremental) O(m ∗ (n2 log(n) + n2k))

OOSE (incremental) O(
∑m+n

i=1 (iD + i2 log(i) + i2k))
S-Isomap O(n3 +mn(D + d2 + k))

n = |B|, m = |S|, n� m

OOSE above refers to the out-of-sample-extension technique
proposed by Law and Jain (2006). S-Isomap has a O(max(n2, nd))
space complexity.
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S-Isomap Results

S-Isomap
Results for Euler Isometric Swiss Roll
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The results illustrate that the error due to streaming points is low as well as
similar asymptotic behavior.
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S-Isomap Summary

S-Isomap
Summary

We studied & formulated the notion of error metrics for
manifold learning techniques and quanti�ed them, as well as we
devise a technique to deal with scenarios wherein ground truth
is unavailable.
We demonstrate that it is possible to learn a robust, stable
manifold using only a subset of data.
Consequently, we propose a novel incremental, online algorithm,
suitable for high-volume, high-throughput stream processing, to
incorporate streamed data into a stable manifold, e�ciently.
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S-Isomap++ Motivation

S-Isomap++
Motivation

Typical real world scenario wherein we need to learn the inverse mapping,
φ−1, to be able to uncover the intrinsic low-dimensional representation
from high-dimensional data.
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S-Isomap++ Motivation

S-Isomap++
Motivation

How well di�erent algorithms could recreate the latent ground truth used
to generate the high-dimensional data.
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S-Isomap++ Motivation

S-Isomap++
Motivation

Multiple manifolds typically involve dissimilar mappings {φi}i=1,2,...p
projecting the intrinsic low-dimensional representation to higher
dimensional real-world data.
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S-Isomap++ Motivation

S-Isomap++
Motivation

In an ideal scenario, when manifolds are densely sampled and su�ciently
separated, existing NLSDR methods can uncover individual manifolds. But
intersecting manifolds are still a challenge.
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S-Isomap++ Introduction

S-Isomap++
Introduction

The algorithm takes in as input, the batch and streaming data sets, B
and S respectively and can be divided into two main phases:

Batch processing phase
Cluster samples in B into p clusters.
Learn individual manifolds corresponding to each cluster, and
map samples from each cluster to its low-dimensional
representation.
Map low-dimensional samples from individual manifolds into a
global space.

Stream mapping phase
Map each sample s from S onto each of the p manifolds by
matching their inner products to the computed geodesic
distances with the k nearest neighbors, to determine which
manifold s belongs to.
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S-Isomap++ Uncovering individual manifolds

S-Isomap++
Batch Processing phase

1: Ci=1,2...p ← Find Clusters(B, ε)
2: ξs ← ∅
3: for 1 ≤ i ≤ p do
4: LDE i ← Isomap(Ci)
5: end for

6: ξs ←
p⋃
i=1

p⋃
j=i+1

NN(Ci, Cj,k) ∪ FN(Ci, Cj, l)

7: GEs ← MDS(ξs)
8: for 1 ≤ j ≤ p do
9: I ← ξs ∩ Cj

10: A←
[
LDEIj
eT

]
11: Ri, ti ← GEI,s ×AT

(
AAT + λI

)−1
12: end for
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S-Isomap++ Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

Multiscale SVD (M-SVD) allows us to estimate the intrinsic
dimension of noisy, high-dimensional point clouds.
M-SVD estimates the intrinsic dimension by computing singular
values σx,ri∈{1,2,...D} of B(x, r), ∀x ∈M, at di�erent scales r > 0.

Small r leads to not enough samples in B(x, r).
Large r leads to curvature making the process over estimate the
intrinsic dimension.
True {σx,ri } separate from the noise {σx,ri } at the right scale, due
to their di�erent rates of growth and the intrinsic dimension of
M gets revealed.
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S-Isomap++ Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

How {σx,ri } behave over di�erent scales when M-SVD is done on a noisy R
5

sphere embedded in R100 ambient space. Notice how the noise dimensions
decay out, leaving only the primary components at the appropriate scale.
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S-Isomap++ Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

Executing M-SVD on the local neighborhood of ∀xi ∈ B, allows us
to determine basis vectors, ti1, ti2, . . . , tid′ , which de�ne the
tangent plane, Ti.
To determine the similarity between tangent planes Ti and Tj, we
tried the following techniques, including two novel approaches :

Gunawan’s approach :
φ(Ti, Tj) = cos θ = |det(N )|, where Nx,y = TixTTjy
L1-norm based metric :
φ(Ti, Tj) = 1

k
∑k

l=1 |t>il tjl|

L2-norm based metric :
φ(Ti, Tj) =

√
1
k
∑k

l=1(t>il tjl)2
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S-Isomap++ Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

Incremental in nature.
Initially all points ∀xi ∈ B are unlabeled.
An unlabeled random point xk is picked and is labeled as lk, the
next available label index.
Subsequently, similarity of xk with all unlabeled x ∈ N (xk) is
evaluated. If similarity exceeds certain threshold i.e.
cos θ ≥ εthres, points in N (xk) also get labeled as lk.
Repeat above, till all points are labeled.
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S-Isomap++ Mapping

S-Isomap++
Stream Mapping phase

S-Isomap maps points s ∈ S by matching their inner products with
LDECi to the computed geodesic distances with the k nearest neigh-
bors of s.
1: for s ∈ S do
2: for 1 ≤ i ≤ p do
3: yis ← S-Isomap(s, Ci)
4: GE is ←Riyis + ti
5: end for
6: end for
7: index← argmini

∣∣∣yis − µ(Ci,Ri, ti)
∣∣∣

8: YS ← YS ∪ yindexs
9: return YS
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S-Isomap++ Results

S-Isomap++
Multiple planes through swiss-roll

Top: Actual manifolds in R3 space, clustered for demonstration, Bottom Le�:
Recreation by Isomap/M-Isomap, Bottom Row: Recreation by S-Isomap++.Suchismit Mahapatra Scalable Nonlinear Spectral Dimensionality Reduction (NLSDR) Methods For Streaming Data33 / 55



S-Isomap++ Results

S-Isomap++
Results

Method L-1 L-2 Gunawan
Sphere-Sphere 0.825 0.619 0.5
Sphere-Plane 0.759 0.602 0.5
Swiss Roll-Plane 0.838 0.621 0.5

Accuracy scores for the di�erent tangent manifold clustering approaches.

digit ‘0’ 0.0296 digit ‘3’ 0.0364 digit ‘6’ 0.0476
digit ‘1’ 0.0806 digit ‘4’ 0.0586 digit ‘8’ 0.0712
digit ‘2’ 0.0499 digit ‘5’ 0.0449 digit ‘9’ 0.0498

Procrustes error values for di�erent digits of MNIST, computed by
comparing the original with 3-D recreation via S-Isomap++.
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S-Isomap++ Summary

S-Isomap++
Summary

The proposed algorithm allows for scalable non-linear
dimensionality reduction of streaming high-dimensional data.
By allowing for the samples to belong to multiple manifolds, or
sampled non-uniformly in a single manifold, our approach can
be applied to a wide variety of practical settings.
The ability to cluster data lying on multiple intersecting
manifolds is signi�cant since it allows us to automatically
identify the number of underlying manifolds.
Our algorithm assumes that all manifolds are represented in the
batch data set. This means that a novel manifold which might
appear subsequently in the stream S , does not get learned. We
plan to resolve this limitation in our future work.
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GP-Isomap Motivation

GP-Isomap
Motivation

Handling non-stationary streams:
S-Isomap++ cannot detect and handle changes in the stream
distribution.
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GP-Isomap Motivation

GP-Isomap
Motivation

Fits a GP on
batch data.
Computes GP
predictions on
streaming
samples.
Uses GP variance
to identify
possible shi�s in
stream.
Subsequently,
re-trains batch to
handle novel
instances.
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GP-Isomap Methodology

GP-Isomap
Methodology

Uses Isomap for learning low-dimensional embeddings for
Ci=1,2...p.
For hyper-parameter estimation, uses low-dimensional
embeddings uncovered by Isomap and Geodesic Distance based
kernel.
For Gaussian Process (GP) regression, uses low-dimensional
embeddings uncovered by Isomap, Geodesic Distance based
kernel and GP speci�c estimated hyper-parameters.
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GP-Isomap Batch Phase

GP-Isomap
Batch Phase

Batch phase of GP-Isomap
1: Ci=1,2...p ← Find-Clusters(B, ε)
2: ξs ← ∅
3: for 1 ≤ i ≤ p do
4: LDE i,Gi ← Isomap(Ci)
5: end for
6: for 1 ≤ i ≤ p do
7: φGPi ← Estimate(LDE i,Gi)
8: end for
9: ξs ←

p⋃
i=1

p⋃
j=i+1

NN(Ci, Cj, k) ∪

FN(Ci, Cj, l)
10: GEs ← MDS(ξs)
11: for 1 ≤ i ≤ p do
12: I ← ξs ∩ Cj

13: A←
[
LDEIj
eT

]
14: Ri, ti←GEI,s×AT

(
AAT + λI

)−1
15: end for
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GP-Isomap Streaming Phase

GP-Isomap
Streaming Phase

Streaming phase of GP-Isomap
1: Su ← ∅
2: for s ∈ S do
3: if |Su| ≥ ns then
4: Yu← Re-run Batch Phase

with B ← B ∪ Su
5: end if
6: for 1 ≤ i ≤ p do
7: µi, σi←GP-Reg(s,LDE i,Gi)
8: j← argmini |σi|

9: if σj ≤ σt then
10: ys ←Rjµj + tj
11: YS ← YS ∪ ys
12: else
13: Su ← Su ∪ s
14: end if
15: end for
16: end for
17: return YS
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GP-Isomap Geodesic-Distance Based Kernel

GP-Isomap
Geodesic-Distance Based Kernel

The GP-Isomap algorithm uses a novel geodesic distance based
kernel function de�ned as:

k(yi, yj) = σ2s exp

(
−
bi,j
2`2
)

where bi,j is the ij
th entry of the normalized geodesic distance matrix

B, σ2s is the signal variance (whose value is �xed as 1.0 in this work)
and ` is the length scale hyper-parameter.
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GP-Isomap Geodesic-Distance Based Kernel

GP-Isomap
Geodesic-Distance Based Kernel

The novel kernel is positive-de�nite (PD) as demonstrated below :-

K
(
x, y
)

= I+
d∑
i=1

[
exp

(
− λi
2`2
)
− 1
]
qiqTi = I+ QΛ̃QT

where Λ̃ =


[

exp
(
− λ1
2`2
)
− 1
]

0 0

0 . . . 0
0 0

[
exp

(
− λd2`2

)
− 1
]
 and

{λi,qi}i=1...d are the eigenvalue/eigenvector pairs of B.
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GP-Isomap Results

GP-Isomap
Results

[Procrustes error (PE) between the ground truth with a) GP-Isomap (blue line) with the geodesic distance based kernel, b)
S-Isomap (dashed blue line with dots) and c) GP-Isomap (green line) using the Euclidean distance based kernel, for di�erent
fractions (f ) of data used in the batch B.]
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GP-Isomap Results

GP-Isomap
Results

[Using variance to detect concept-dri� using the four patches dataset.Initially, when stream consists of samples generated
from known modes, variance is low, later when samples from an unrecognized mode appear, variance shoots up. We can also
observe the three variance “bands” above corresponding to the variance levels of the three modes for t ≤ 3000.]
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GP-Isomap Results

GP-Isomap
Results

[Using variance to identify concept-dri� for the GSAD dataset. The introduction of points from an unknown mode in the stream
results in variance increasing drastically as demonstrated by the mean (red line). The spread of variances for points from
known modes (t - 2000) is also smaller, compared to the spread for the points from the unknown mode (t % 2000).]
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S-Isomap Theoretical Results

S-Isomap
Theoretical Results

Theorem
Given uniformly sampled, unimodal distribution from which the batch
dataset B for S-Isomap is derived from, ∃n0 i.e. for n ≥ n0 the
Procrustes Error εProc

(
τB, τ ISO

)
between τB = φ−1

(
B
)
, the true

underlying representation and τ ISO= φ̂
−1(B), the embedding

uncovered by Isomap is small (εProc ≈ 0) i.e. the batch phase of the
S-Isomap algorithm converges.

Proof.
[Bernstein et al.] showed that a data set B having samples
drawn from a Poisson distribution with density function α
satisfying certain conditions, leads to

(1− λ1) ≤
dG(x, y)

dM(x, y)
≤ (1+ λ2)

[
∀x, y ∈ B

]
(1)
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Theoretical Results

Proof.
D̃G= D̃M + ∆D̃M
Equating the expected sample size (nα̃) from a �xed distribution
to the density function α, we get the threshold for n0 i.e.

n0 = (1/α̃) log(V/(µṼ(δ/4)))/Ṽ(δ/2)

= (1/α̃)
[

log(V/µηd(λ2ε/16)d)
]
/ηd(λ2ε/8)d

(2)

where D̃M and D̃G represent the squared distance matrix
corresponding to dM(x, y) and dG(x, y) respectively, α̃ is the
probability of selecting a sample from B, V = volume of the
manifold, Ṽ(r) = ηdrd and ηd = volume of unit ball in Rd.
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S-Isomap
Theoretical Results

Proof.
[Sibson et al] demonstrated the robustness of MDS to small
perturbations i.e. let F perturb the true squared-distance matrix
B to B+ ∆B = B+ εF. PE between the embeddings uncovered by

MDS for B and B+ ∆B equates to ε2

4
∑
j,k

eTj Fek
2

λj+λk
≈ 0 for small

perturbation matrix F.
Substituting ε = 1 and replacing B with D̃M and ∆B with ∆D̃M
above, we get our result, since the entries of ∆D̃M are very small
i.e. {0 ≤ ∆D̃M(i, j) ≤ λ2}1≤i,j≤n where λ = max(λ1, λ2) for small λ1,
λ2.
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GP-Isomap
Theoretical Results

Theorem
The prediction τGP of GP-Isomap is equivalent to the prediction τ ISO
of S-Isomap upto translation, rotation and scaling factors i.e. the
Procrustes Error εProc

(
τGP, τ ISO

)
between τGP and τ ISO is 0.

Proof.
Want to show εProc

(
τGP, τ ISO

)
= 0.

Subsequently, demonstrate that τGP is a scaled, translated,
rotated version of τ ISO.
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Theoretical Results

Proof.
The 1st dimension for S-Isomap prediction can be written as

τ ISO1 =

√
λ1
2

n∑
i=1

q1,i
(
γ − g2i,n+1

)
(3)

The 1st dimension for GP-Isomap prediction can be written as

τGP1 =
α
√
λ1

1+αc1

n∑
i=1

q1,i
(
1−

g2i,n+1
2`2

)
(4)

where γ =
( 1
n
∑
j
g2i,j
)
, λ1 = 1st eigenvalue of B and q1 the

corresponding eigenvector, α = 1(
1+σn2

) and c1 =
[

exp
(
− λ1
2`2
)
− 1
]
.
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Theoretical Results

Proof.
(3) is a scaled, translated, rotated version of (4).
Similarly, for each of the dimensions (1 ≤ i ≤ d), τGPi can be
shown to be a scaled, translated, rotated version of τ ISOi.
We consolidate these individual scaling, translation and rotation
factors together into single collective factors and demonstrate
the required result.

�
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GP-Isomap
Empirical Results

Comparing predictions for S-Isomap++ and GP-Isomap empirically for the
Euler Isometric Swiss Roll data set. The low-dimensional representations
uncovered by each are almost similar.
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GP-Isomap
Summary

We studied and developed a systematic approach which can
perform scalable and robust non-linear dimension reduction of
high-dimensional streaming data.
We formulated a novel geodesic distance based kernel function
and provide an analysis of its spectral properties.
Our proposed approach allows us to not only predict but also
provides a measure of prediction uncertainty.
We provide theoretic results which allow us to understand how
well our proposed algorithm works.
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Conclusions & Future Work

Can work with only a fraction of the data and still be able to
learn, while processing the remaining data “cheaply”.
Demonstrate theoretically that a “point of transition” exists for
certain algorithms.
Provide error metrics to practically identify them.
Formulate a generalized OOSE framework for streaming NLSDR.
Including other NLSDR methods as part of this framework and
understanding relationships with other members of the NLDR
family are future research directions.
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