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Manifold Learning In Streams Motivation

Manifold Learning In Streams

Motivation

@ Understanding the structure of multidimensional patterns is of
primary importance.

@ Processing data streams, potentially infinite requires adequate
summarization which can handle inherent constraints and
approximate characteristics well.
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Manifold Learning In Streams Massive amounts of data

Manifold Learning In Streams

Massive amounts of data

@ Natural data tends to be generated by systems (physical or
non-physical) that have very few degrees of underlying freedom.

@ Real-world data is typically a result of complex non-linear
processes, but can often be described by a low-dimensional

manifold.
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Manifold Learning In Streams Nonlinear Process Dynamics

Manifold Learning In Streams

Nonlinear Process Dynamics
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Morphological parametric trajectories for a nonlinear process.

[Click here for simulation of all parametric trajectories][Click here for simulation of Manifold]
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https://www.youtube.com/watch?v=ehN4I1TsBRc
https://www.youtube.com/watch?v=fwT1zJ7VMFc

Manifold Learning In Streams Challenges Involved

Manifold Learning In Streams

Challenges Involved

@ Curse of dimensionality combined with lack of scalability of
algorithms makes data analysis difficult/inadequate.

@ Cannot use entire streams as training data motivates
Out-of-Sample Extension (OOSE) techniques.

@ Need to formalize “collective error” in NLSDR methods and
strategies to quantify it.

@ Dealing with intersecting manifolds.
@ Need to handle concept drift i.e. changes in stream properties.
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Learning efficiently Common Approaches

Learning efficiently

Common Approaches

@ Smoothness
e Try to learn functions that are
@ Examples - Spline based techniques, Kernelmethods
L,-regularization, etc.

@ Sparsity
o Represent in terms of basis functions.
@ Examples - Lasso, Compressive Sensing, Wavelets
@ Geometry
o Data distribution is ,try to
e Examples - Laplacian based technlques Manifold learnmg
Even more in high-dimensional spaces.

Suchismit Mahapatra Scalable Nonlinear Spectral Dimensionality F 6/55



Manifold Learning Assumptions

Manifold Learning

Assumptions

@ Distribution of data

@ Data some low-dimensional manifold, typically
in high dimensions and by

@ Typically used as a generic
to probability distributions in

high-dimensional spaces.
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Manifold Properties

Manifold

Properties

Definition
A manifold M is a metric space with the following property: if
x € M, then there exists some neighborhood ¢/ of z and 3n such that

U is homeomorphic to R™.
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Manifold Properties

Manifold

Properties

Definition
A manifold M is a metric space with the following property: if
x € M, then there exists some neighborhood ¢/ of z and 3n such that

U is homeomorphic to R™.

o structure can be more

@ Usually embedded in high dimensional spaces, but the
is typically low due to

@ Examples
@ Set of queries/product descriptions
o Image data sets
o State space of MDP’s
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Manifold

Caltech 101 Dataset
Caltech 101 Dataset

[Credit: https://lvdmaaten.github.io/]
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Nonlinear Spectral Dimension Reduction Formulation

Nonlinear Spectral Dimension Reduction

Formulation

Definition

Given X = [Xq, Xz, ..., Xn] ", where Vx; € RP, the task is to find a
corresponding low-dimensional representation, y; € RY, for each x;,
where d < D.

@ We assume there exists ¢ : R — RP that maps each data sample
y; € R to x; € RP,

@ The goalisto learn the inverse mapping, ¢~ 7, that can be used to
map high-dimensional x; to low-dimensionaly;, i.e. y; = ¢~ '(X;).

Suchismit Mahapatra Scalable Nonlinear Spectral Dimensionality F 10/ 55



Nonlinear Spectral Dimension Reduction Overview & Workflow

Nonlinear Spectral Dimension Reduction

Overview & Workflow

@ NLSDR techniques i.e. Isomap, Diffusion Maps, Laplacian
Eigenmaps, Locally Linear Embedding rely on the spectral
decomposition of the feature matrix that captures properties of
the underlying sub-manifold.

KNN KNN Graph ionall
Search Ana/yrsal‘sj Eigensolver D”Enser::;fggnlty
High dimensional ( Neighborhood ( Feature ( Eigenvectors ( Low-dimensional
Data Graph Matrix Eigenvalues Embedding
nxD matrix nxk matrix nxn matrix nxd matrix

General NLSDR workflow
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Nonlinear Spectral Dimension Reduction Illustration

Nonlinear Spectral Dimension Reduction

Illustration
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PCA on a simple data set and the intrinsic dimensionality it uncovers, even
after using Fourier transformation.
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Nonlinear Spectral Dimension Reduction Isomap

Nonlinear Spectral Dimension Reduction

Isomap

@ Isomap is a non-linear generalization of the classical Multi
Dimensional Scaling (MDS) algorithm.

@ The intuition is to perform MDS, not in the input space, but

rather in the geodesic space of the non-linear data manifold.

@ But there are plenty of challenges to manifold learning.
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S-lsomap Notion of Error

S-Isomap

Notion of Error

@ To measure the notion of error, we use

@ The idea is to align matrices, A and B, by finding the
translation /, rotation 72, and scaling s that minimizes the
Frobenius norm between A and B :

éproc(A, B) = min [[sRB +1 — AllF.

iAg)
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S-lsomap Notion of Error

S-Isomap

Notion of Error

@ To measure the notion of error, we use

@ The idea is to align matrices, A and B, by finding the
translation /, rotation 72, and scaling s that minimizes the
Frobenius norm between A and B :

éproc(A, B) = min [[sRB +1 — AllF.

iAg)

@ The above has a obtained by performing
SVD on AB'.

@ We determine how well LDEy represents the low-dimensional
ground truth GTy using eproc(LDE v, GTx).
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S-Isomap Notion of Error

S-Isomap

Notion of Error

Noisy Data
True Data

Error

0+ T T T T T La— L |
0 10 20 30 40 50 60 70 80 90 100
Data Size (%)

Procrustes error between the true and approximate mapping learnt with
and without sampling error.
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S-Isomap

Experiments using MNIST, Corel, Swiss Roll datasets
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S-Isomap Algorithm

S-Isomap
Algorithm Design

This key intuition allowed us to formulate a means for
mapping streaming points to the manifold.
@ Choose an set B based on error analysis.
Qo on B to get the manifold
M = LDEg.
© Subsequently, streaming points s € S by

with LDE; to the computed geodesic distances
with the k nearest neighbors of s.
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S-Isomap Algorithm

S-Isomap
Proposed Algorithm

Input: Gb, Xb, Yb, Xs, kR
Output: ys

1 KNN, kDist < KNN(xs, Xp, k)

2 for1<i<ndo

3: g min1§j§k{kDiStj + Gbk""i’i}
4 end for

5: _

6: C < %(g-1n—g—Gb-1n+Gb)
2P+ (Y)Vp) Y cC

8 V< [Yp;p]

o Ys—p-—Y
10: return ys
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S-Isomap Performance analysis of S-Isomap

S-Isomap

Performance analysis

Method \ Time Complexity |
OOSE (non-incremental) O(m * (n?log(n) + n2k))
OOSE (incremental) O ™(iD + % log(i) + i%k))
S-Isomap

n=|Bl,m=|S,n<m

OOSE above refers to the out-of-sample-extension technique
proposed by Law and Jain (2006). S-Isomap has a O(maz(n?, nd))
space complexity.
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S-Isomap Results

S-Isomap

Results for Euler Isometric Swiss Roll
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The results illustrate that the error due to streaming points is low as well as
similar asymptotic behavior.
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S-lsomap Summary

S-Isomap

Summary

@ We studied & formulated the for
manifold learning techniques and quantified them, as well as we
a technique to deal with scenarios wherein

@ We demonstrate that it is a robust, stable

manifold using only a .

@ Consequently, we propose a novel algorithm,
suitable for , to
incorporate streamed data into a manifold, efficiently.
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S-lsomap++ Motivation

S-Isomap++

Motivation

08f gt
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Typical real world scenario wherein we need to learn the inverse mapping,
¢~ ", to be able to uncover the intrinsic low-dimensional representation
from high-dimensional data.
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S-lsomap++ Motivation

S-Isomap++

Motivation

Isomap recreation M-Isomap recreation
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How well different algorithms could recreate the latent ground truth used
to generate the high-dimensional data.
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S-lsomap++ Motivation

S-Isomap++

Motivation

Ground truth

Dimension 2

02

04

06"

Dimension 1

Multiple manifolds typically involve dissimilar mappings {¢i}iz12..p
projecting the intrinsic low-dimensional representation to higher
dimensional real-world data.
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S-lsomap++ Motivation

S-Isomap++

Motivation

S-Isomap#++ recreation

Latent dimension 2
Latent dimension 2

06 04 02 0 02 04 06 08 25 o 05 1
Latent dimension 1 Latent dimension 1

In an ideal scenario, when manifolds are densely sampled and sufficiently
separated, existing NLSDR methods can uncover individual manifolds. But
intersecting manifolds are still a challenge.
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S-lsomap++ Introduction

S-Isomap++

Introduction

The algorithm takes in as input, the batch and streaming data sets, B
and S respectively and can be divided into two main phases:
@ Batch processing phase

° samples in B into p clusters.
° individual manifolds corresponding to each cluster, and
samples from each cluster to its low-dimensional
representation.
° low-dimensional samples from individual manifolds into a
global space.

@ Stream mapping phase

° each sample s from S onto each of the p manifolds by
to the computed geodesic
distances with the %k nearest neighbors, to determine which
manifold s belongs to.
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S-lsomap++ Uncovering individual manifolds

S-Isomap++

Batch Processing phase

1 Ciz12..p < Find_Clusters(B, €)
1 &s 0

3: for1<i<pdo

4 LDE; <+ Isomap(C;)

5. end for

N

p P

1 & — U U NN(C,',Cj,k)U FN(C,’,CjJ)
=1 j=i+1

: GEs < MDS(&s)

8 for1<j<pdo

v
10: A%[ﬁffj ]

1M Rt GErs x AT(AAT + A
12: end for
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S-lsomap++ Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

@ Multiscale SVD (M-SVD) allows us to the
of noisy, high-dimensional point clouds.

@ M-SVD estimates the intrinsic dimension by

Uférg 2,..D} of B(x, r), Vx € M, at different r> o.
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S-lsomap++ Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

@ Multiscale SVD (M-SVD) allows us to the
of noisy, high-dimensional point clouds.

@ M-SVD estimates the intrinsic dimension by

ofg{mva} of B(x,r), Vx € M, at different r>o.
@ Small r leads to in B(x,r).
@ Large r leads to making the process the
intrinsic dimension.
@ True {0""} separate from the noise {7} at the , due
to their and the intrinsic dimension of

M gets revealed.
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S-lsomap++ Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering
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How {0""} behave over different scales when M-SVD is done on a noisy R®
sphere embedded in R™° ambient space. Notice how the noise dimensions
decay out, leaving only the primary components at the appropriate scale.
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S-lsomap++ Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

@ Executing M-SVD on the local neighborhood of vx; € 5, allows us
to determine basis vectors, t;;, t;,, . . ., tjy, which define the
tangent plane, 7;.

@ To determine the similarity between tangent planes 7; and 7j, we
tried the following techniques, including two novel approaches :

o(Ti, Tj) = cos = \det'(/\/)|, where Ny, = 757},
° ) :

O(Ti, Tj) = % 2o It il
o .

ST T}) = /3 S (] )2
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S-lsomap++ Uncovering individual manifolds

S-Isomap++
Tangent Manifold Clustering

° in nature.

° VX; € B are .

@ An point x; is picked and is as lg, the
next available label index.

@ Subsequently, of x, with all unlabeled x € N (xy) is
evaluated. If similarity i.e.
cos > etpres, POINts in N/(x) also get as ly.

° above, till all points are labeled.
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S-lsomap++ Mapping

S-Isomap++
Stream Mapping phase

S-Isomap points s € S by with
LDE;. to the computed geodesic distances with the k nearest neigh-
bors of s.

1: fors € Sdo
22 for1<i<pdo
3 y. « S-Isomap(s, C;)
4 GEL « RiyL +ti
5:  end for
6: end for
7
8
9

. index « argmin; |yl — 1(Ci, Rj, t;)

: Vs« Vs Uyéndex
: return )s
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S-Isomap++ Results

S-Isomap++

Multiple planes through swiss-roll

Isomap recreation

Latent dimension 1

Sisomaps+ recreation

Latent ¢imension 2

%5 04 a2 o 02
Latent dimension 1

Top: Actual manifolds in R3 space, clustered for demonstration, Bottom Left:
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S-Isomap++ Results

S-Isomap++
Results
Method L-1 -2 | Gunawan
Sphere-Sphere | 0.825 | 0.619 0.5
Sphere-Plane | 0.759 | 0.602 0.5
Swiss Roll-Plane | 0.838 | 0.621 0.5

digit ‘0’ | 0.0296 || digit ‘3’ | 0.0364 | digit ‘6’ | 0.0476
digit 1’ | 0.0806 | digit 4’ | 0.0586 | digit ‘8’ | 0.0712
digit 2’ | 0.0499 || digit 5’ | 0.0449 | digit ‘9’ | 0.0498

Suchismit Mahapatra
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S-Isomap++ Summary

S-Isomap++
Summary
@ The proposed algorithm allows for non-linear
dimensionality reduction of .
@ By allowing for the samples to belong to manifolds, or
sampled in a single manifold, our approach can
be applied to a of settings.
@ The ability to data lying on
manifolds is since it allows us to
identify the number of manifolds.
@ Our algorithm that all manifolds are represented in the

batch data set. This means that a novel manifold which might
subsequently in the stream S, does not get learned. We
plan to this limitation in our
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GP-Isomap Motivation

GP-lIsomap

Motivation

Handling non-stationary streams:
@ S-Isomap++ and changes in the stream
distribution.

Suchismit Mahapatra Scalable Nonlinear Spectral Dimensionality F
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GP-Isomap Motivation

GP-lIsomap

Motivation

@ Fitsa GP on
batch data.

@ Computes GP
predictions on b3
streaming '
samples.

@ Uses GP variance
to identify
possible shifts in
stream.

@ Subsequently,
re-trains batch to
handle novel
instances.
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GP-Isomap Methodology

GP-lIsomap
Methodology

@ Uses Isomap for learning low-dimensional embeddings for
Ci:1,2...p°

@ For hyper-parameter estimation, uses low-dimensional
embeddings uncovered by Isomap and Geodesic Distance based
kernel.

@ For Gaussian Process (GP) regression, uses low-dimensional
embeddings uncovered by Isomap, Geodesic Distance based
kernel and GP specific estimated hyper-parameters.
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GP-Isomap Batch Phase

GP-Isomap
Batch Phase

1 Ci_q,. p < Find-Clusters(B, €) FN(C;, C;, 1)
2 &5 0 10: GE5 + MDS(¢s)
3: for1<i<pdo 1: for1 <i<pdo
4 LDE;,G; + lsomap(C;) 122 T+ &NG
5: end for LDEL
6: for1<i<pdo 13: A%{ o }
; enﬁig;;f Estimate(£DE;, Gi) wi Risti GErsx AT(AAT + )
) p p 15: end for
&« U U NN, ¢, k) U
i=1j=i+1
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GP-Isomap Streaming Phase

GP-Isomap

Streaming Phase

1 Sy« 0 9: if oj < ot then
2: fors € Sdo 10: Ys < Rjpj + ¢
3 if |Sy| > ns then 1 Vs < VsUYs
L Y, < Re-run Batch Phase 12 else

with B «— BU S, 13 Sy+S,Us
s endif Uy: end if
6: for1<i<pdo 15:  end for
7: ui, oi + GP-Reg(s, LDE;, G;) 16: end for
8: J < argmin; |o;] 17: return Vs
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GP-Isomap Geodesic-Distance Based Kernel

GP-Isomap

Geodesic-Distance Based Kernel

The GP-Isomap algorithm uses a
kernel function defined as:

b: :
R(y;,y;) = o5 exp <— "J>

202
where b;; is the ijth entry of the geodesic distance matrix
B, o2 is the (whose value is fixed as 1.0 in this work)
and £ is the hyper-parameter.
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GP-Isomap Geodesic-Distance Based Kernel

GP-Isomap

Geodesic-Distance Based Kernel

The is (PD) as demonstrated below :-

d
A ~
K(x,y) =1+ Z [exp <_2£I2> — 1]Qiq,'T — 1+ QAQT
i=1

[exp (—5%) -1 © o)
where A = 0 0 and
Ad
0 0 [exp (—?> —1]
{Ai, Gi}izq._q are the pairs of B.
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GP-lIsomap

Results

GP-Isomap Results

GP-Isomap ~ vanilla GP ~ S-Isomap

06

o

05

04

03

Procrustes Error

02

—=— GP using standard RBF
=— GP using normalized geodesic distance matrix
N —# S-lsomap

01

00

01

[Procrustes error (PE) between the ground truth with a) GP-Isomap (blue line) with the geodesic distance based kernel, b)

02

03 04 035 0.
Fraction of data used as

1] 07 08 09
batch

S-Isomap (dashed blue line with dots) and c) GP-Isomap (green line) using the Euclidean distance based kernel, for different
fractions (f) of data used in the batch B.]
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GP-Isomap Results

GP-Isomap

Results
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Results

GP-Isomap

GP-Isomap

Results
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S-Isomap Theoretical Results

S-Isomap

Theoretical Results

Theorem

Given uniformly sampled, unimodal distribution from which the batch
dataset B for S-Isomap is derived from, 3n, i.e. for the

Procrustes Error eproc (T35, Tiso) between T3 = ¢~ " (B), the true
underlying representation and Tso= ¢ ' (B), the embedding

uncovered by Isomap is small ( )i.e.
Proof.
@ [Bernstein et al.] showed that a data set B having samples
drawn from a with

satisfying certain conditions, leads to

dg(X,y)
(1—=X) < dm(x.y)

Suchismit Mahapatra Scalable Nonlinear Spectral Dimensionality F 46/ 55
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S-Isomap Theoretical Results

S-Isomap

Theoretical Results

Proof.
(*] BG: BM + ABM
@ Equating the (nax) from a fixed distribution
to the a, we get the threshold for ng i.e.

no = (1/&) log(V/(uV(8/4)))/V(5/2)
= (1/&)[log(V/ umg(Aae/16)%)] /na(Aae/8)

where Dy and Dg represent the
corresponding to du(x,y) and dg(x, y) respectively, a is the
from B,V =
,V(r) =mngr and n, = in RY.
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S-Isomap Theoretical Results

S-Isomap

Theoretical Results

Proof.

@ [Sibson et al] demonstrated the robustness of MDS to small
perturbations i.e. let F perturb the true squared-distance matrix
B to B+ AB = B + €F. PE between the embeddings uncovered by

Feh,2

T
MDS for B and B + AB equates to % > if+—Ak ~ o for small
jk

perturbation matrix F.

@ Substituting e = 1and replacing B with Dy and AB with ADy
above, we get our result, since the entries of ADy are very small
i.e. {0 < ADw(i,J) < N}<ij<n Where X = max(\q, A2) for small )\,
Ao

v
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GP-Isomap Theoretical Results

GP-lIsomap

Theoretical Results

Theorem

The prediction Tp of GP-Isomap is equivalent to the prediction 159
of S-Isomap upto translation, rotation and scaling factors i.e. the
Procrustes Error eproc(Tcp, Tiso) between T¢p and 7so is 0.

Proof.
@ Want to show eproc(Tap, Tiso) = O.

@ Subsequently, demonstrate that 7¢p is a scaled, translated,
rotated version of Tiso.

Suchismit Mahapatra Scalable Nonlinear Spectral Dimensionality F 49/ 55




GP-Isomap Theoretical Results

GP-lIsomap
Theoretical Results
Proof.
@ The 15t dimension for can be written as
TI1S01 = ) (3)
i=1
@ The 15t dimension for can be written as
2
a\/>1 i,n+1
TGP1 = 1+ ac Zqﬂ 202 ) (4)
where v = (7 Zg,?j), A =15t of B and q, the
]. R
corresponding , o= m and ¢; = [exp (—3%) — 1]
On
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GP-Isomap Theoretical Results

GP-lIsomap

Theoretical Results

Proof.
@ (3)is a scaled, translated, rotated version of ().

@ Similarly, for each of the dimensions (1 < i < d), Tgp; can be
shown to be a scaled, translated, rotated version of 7sg;.

@ We consolidate these individual scaling, translation and rotation
factors together into single collective factors and demonstrate
the required result.

v
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GP-Isomap Empirical Results

GP-lIsomap

Empirical Results

S-isomap++ recreation GP-Isomap recreation

Latent dimension 2
Latent dimension 2
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Comparing predictions for S-lIsomap++ and GP-lsomap empirically for the
Euler Isometric Swiss Roll data set. The low-dimensional representations
uncovered by each are almost similar.
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Summary
@ We studied and developed a which can
perform and non-linear dimension reduction of
streaming data.
@ We formulated a function
and provide an of its properties.
@ Our proposed approach us to not only but also
a of .
@ We provide which allow us to how

our proposed algorithm
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@ Can work with only a fraction of the data and still be able to
learn, while processing the remaining data “cheaply”.

@ Demonstrate theoretically that a “point of transition” exists for
certain algorithms.

@ Provide error metrics to practically identify them.
@ rFormulate a generalized OOSE framework for streaming NLSDR.

@ Including other NLSDR methods as part of this framework and
understanding relationships with other members of the NLDR
family are future research directions.
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