Autoencoders

Suchismit Mahapatra

Suchismit Mahapat	cra
-------------------	-----

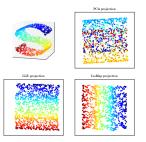
・ 御 ト ・ ヨ ト ・

э

Motivation

Massive amounts of data

- Natural data tends to be generated by systems (physical or non-physical) that have very few degrees of underlying freedom.
- Real-world data is typically a result of complex non-linear processes, but can often be described by a low-dimensional manifold.



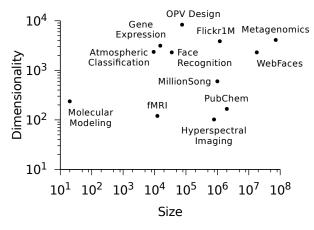
[Credit: Raymond Fu]

Suchismit Mahapatra

Autoencoders

Motivation

Massive amounts of data



Topology of high-dimensional, massive datasets

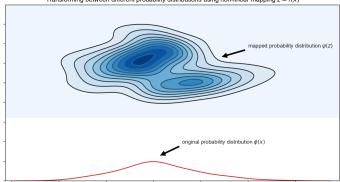
Suchismit Mahapatra

Autoencoders

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Motivation

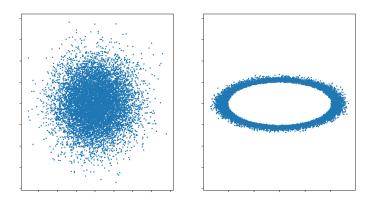
Mapping between different probability distributions



Transforming between different probability distributions using non-linear mapping z = f(x)

Suchismit Mahapatra	а
---------------------	---

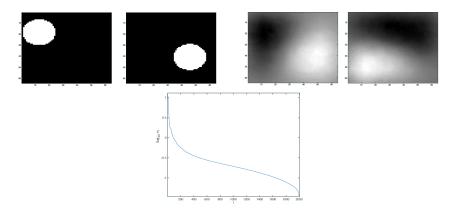
Motivation Creating order from noise



Using $\phi(x) = (\frac{x}{|x|} + \epsilon * x)$ to transform random Gaussian noise to a Torus

Suchismit Mahapatra

Motivation Limitations of Linear Dimension Reduction methods

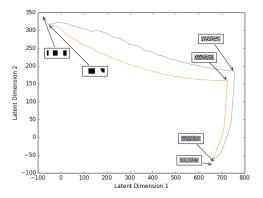


PCA on a simple data set and the intrinsic dimensionality it uncovers, even after using Fourier transformation.

[Credit: Mauro Maggioni]	•	미 에 세례에 세종에 세종에	臣	996
Suchismit Mahapatra	Autoencoders			6 / 24

Latent Spaces

Nonlinear Process Dynamics



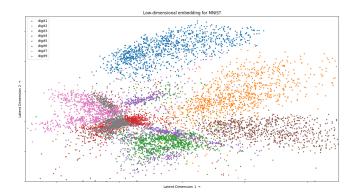
Morphological parametric trajectories for a non-linear process.

[Click here for simulation of all parametric trajectories][Click here for simulation of Manifold] 🗇 🕨 4 🚊 🕨 4 🚊 👘 🛬 🖉 🖉 🖓

Suchismit Mahapatra

MNIST data

Manifolds in latent spaces MNIST data mapped to 2-D



Notice the overlaps between the manifolds of the different digits

Suchismit Mahapatra	
---------------------	--

Caltech 101 Dataset

Manifolds in latent spaces Caltech 101 Dataset

[Credit: Laurens van der Maaten]

Suchismit Mahapatra

Autoencoders

Manifold Learning

- Distribution of data not uniform.
- Data lives on/near some low-dimensional manifold, typically embedded in high dimensions and separated by low-density regions.

Manifold Learning

- Distribution of data not uniform.
- Data lives on/near some low-dimensional manifold, typically embedded in high dimensions and separated by low-density regions.
- Typically used as a generic non-linear, non-parametric technique to approximate probability distributions in high-dimensional spaces.

A (1) < A (2) < A (2) </p>

Manifold Properties

Definition

A manifold \mathcal{M} is a metric space with the following property: if $x \in \mathcal{M}$, then there exists some neighborhood \mathcal{U} of x and $\exists n$ such that \mathcal{U} is homeomorphic to \mathbb{R}^n .

Manifold Properties

Definition

A manifold \mathcal{M} is a metric space with the following property: if $x \in \mathcal{M}$, then there exists some neighborhood \mathcal{U} of x and $\exists n$ such that \mathcal{U} is homeomorphic to \mathbb{R}^n .

- Global structure can be more complicated.
- Usually embedded in high dimensional spaces, but the intrinsic dimensionality is typically low due to fewer degrees of freedom.

Manifold Properties

Definition

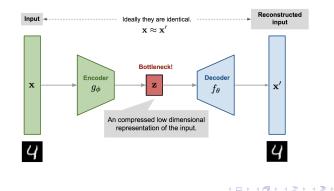
A manifold \mathcal{M} is a metric space with the following property: if $x \in \mathcal{M}$, then there exists some neighborhood \mathcal{U} of x and $\exists n$ such that \mathcal{U} is homeomorphic to \mathbb{R}^n .

- Global structure can be more complicated.
- Usually embedded in high dimensional spaces, but the intrinsic dimensionality is typically low due to fewer degrees of freedom.
- Examples
 - Set of queries/product descriptions
 - Image data sets

- - E → -

Non-linear Dimension Reduction

• Designed to learn the identity function so as to reconstruct the original input while compressing the data to discover a more efficient representation.



[Credit: Lilian Weng]

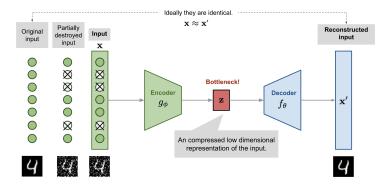
Autoencoder Terminology

- Encoder (g_{ϕ}) Translates the original high-dimensional input into latent low-dimensional code.
- Decoder (f_{θ}) Recovers data from the latent code.
- Objective function (ϕ, θ) are learned together to output a reconstructed data sample same as the original input i.e.

$$(\phi^*, \theta^*) = \arg\min_{\phi, \theta} \mathcal{L}_{AE}(\phi, \theta) = \frac{1}{n} \sum_{i=1}^n (x_i - f_{\theta}(g_{\phi}(x_i)))^2$$

A (1) < A (1) < A (1) </p>

Denoising Autoencoder



[Credit: Lilian Weng]

Suchismit Mahapatra

æ

Sparse Autoencoder

- Applies a "sparse" constraint on the hidden unit activation to avoid over-fitting and improve robustness.
- Forces the model to only have a small number of hidden units being activated at the simultaneously.

A (10) + A (10) +

k-Sparse Autoencoder

 Sparsity is enforced by only keeping the top-k highest activated units in the bottleneck layer using a linear activation function.

(a) k = 70

													• 1	4	Ø	6			3	-
	1		-	1			3				1									\mathcal{O}
	1								4											0
		,	-															1	è	23

(b) k = 40

			-		12										2			14		1
		1								8		¢			14		1	a.		
					*			Å	3	n)									3	
	14					2										3				12

(c) k = 25

1	11	2	3	7	6	to	9	5	0	24	9	片	8	8	10	1	*	0	Ó	¢.	0	8	-	6	4	0	3	8
			0			C		0			6		2	9				0			1			ø				Û.
	3	3			0							5		4	3		2				0	5	ð	6		6	4	
	12	4	5		(2)	6		8	0	2					4			8		n.							0	10

(d) k = 10

Credit: Lilian Weng

Suchismit Mahapatra

Autoencoders

< 同 ト く ヨ ト く ヨ ト

Contractive Autoencoder

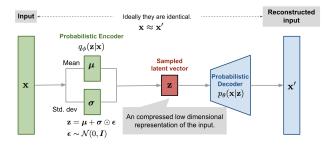
- Encourages learnt representations to stay in a "contractive" space.
- Adds regularization term in the loss function to penalize the representation from being too sensitive to the input.

$$\left\|\mathcal{J}_{f}(\mathbf{x})\right\|_{F}^{2} = \sum_{i,j} \left(\frac{\partial h_{j}(\mathbf{x})}{\partial x_{i}}\right)^{2}$$

• Thus improves the robustness to small perturbations.

Variational Autoencoder

• Instead of mapping the input to a fixed vector, the variational autoencoder maps it into a distribution.



[Credit: Lilian Weng]

Suchismit Mahapatra

Variational Autoencoder Overview

The relationship between high-dimensional input *x* and the latent code *z* can be fully defined using :-

- Prior $p_{\theta}(z)$
- Likelihood $p_{\theta}(x|z)$
- Posterior $p_{\theta}(z|x)$

伺 ト イ ヨ ト イ ヨ ト

Variational Autoencoder

Overview

- The conditional probability $p_{\theta}(x|z)$ defines a generative model, similar to decoder $f_{\theta}(x|z)$. Also known as probabilistic decoder.
- The approximation function $q_{\phi}(z|x)$ is the probabilistic encoder, similar to $g_{\phi}(x|z)$.

Variational Autoencoder Encoder

- Typically implemented using a neural network $q_{\phi}(z|x)$.
- Takes high-dimensional input x as input and outputs encoding z drawn from a Gaussian distribution parametrized by φ.
- Usually $||z|| \ll ||x||$.

A (10) + A (10) +

Variational Autoencoder

- Typically implemented using a neural network $p_{\theta}(x|z)$.
- Takes encoding *z* as input and outputs a reconstruction *x*' of the original high-dimensional input *x*.

A (10) + A (10) +

Variational Autoencoder Loss function

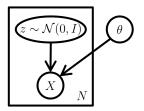
- x' is reconstructed from latent code z.
- Ascertains how much information is lost during transition from *x* to *z* to *x*'.
- Measured using reconstruction log-likelihood log $p_{\phi}(x|z)$.
- Tells us concretely how well the decoder has reconstructed the original input from the latent code *z*.

伺 ト イヨ ト イヨ ト

Variational Autoencoder

Probabilistic Model Perspective

- Data x and latent variables z.
- Joint PDF of model p(x,z) = p(x|z)p(z).
- Decomposes it into likelihood p(x|z) and prior p(z) terms.
- Generative process :-
 - Draw $z \sim p(z)$
 - Draw $x \sim p(x|z)$



[Credit: Carl Doersch]

Suchismit Mahapatra

Autoencoders