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Motivation Massive amounts of data

Motivation
Massive amounts of data

Natural data tends to be generated by systems (physical or
non-physical) that have very few degrees of underlying freedom.
Real-world data is typically a result of complex non-linear
processes, but can o�en be described by a low-dimensional
manifold.

[Credit: Raymond Fu]
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Motivation Mapping between di�erent probability distributions

Motivation
Mapping between di�erent probability distributions
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Motivation Create order from noise

Motivation
Creating order from noise

Using φ(x) = ( x
|x| + ε ∗ x) to transform random Gaussian noise to a Torus
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Motivation Limitations of Linear Dimension Reduction methods

Motivation
Limitations of Linear Dimension Reduction methods

PCA on a simple data set and the intrinsic dimensionality it uncovers, even
a�er using Fourier transformation.

[Credit: Mauro Maggioni]
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Latent Spaces Nonlinear Process Dynamics

Latent Spaces
Nonlinear Process Dynamics

Morphological parametric trajectories for a non-linear process.

[Click here for simulation of all parametric trajectories][Click here for simulation of Manifold]
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https://www.youtube.com/watch?v=ehN4I1TsBRc
https://www.youtube.com/watch?v=fwT1zJ7VMFc


Manifolds in latent spaces MNIST data

Manifolds in latent spaces
MNIST data mapped to 2-D

Notice the overlaps between the manifolds of the di�erent digits
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Manifolds in latent spaces Caltech 101 Dataset

Manifolds in latent spaces
Caltech 101 Dataset

[Credit: Laurens van der Maaten]
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Manifold Learning Assumptions

Manifold Learning
Assumptions

Distribution of data not uniform.
Data lives on/near some low-dimensional manifold, typically
embedded in high dimensions and separated by low-density
regions.

Typically used as a generic non-linear, non-parametric technique
to approximate probability distributions in high-dimensional
spaces.
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Manifold Properties

Manifold
Properties

De�nition
A manifoldM is a metric space with the following property: if x ∈M,
then there exists some neighborhood U of x and ∃n such that U is
homeomorphic to Rn.

Global structure can be more complicated.
Usually embedded in high dimensional spaces, but the intrinsic
dimensionality is typically low due to fewer degrees of freedom.
Examples
– Set of queries/product descriptions
– Image data sets
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Non-linear Dimension Reduction Autoencoder

Non-linear Dimension Reduction
Autoencoder

Designed to learn the identity function so as to reconstruct the
original input while compressing the data to discover a more
e�cient representation.

[Credit: Lilian Weng]
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Autoencoder Terminology

Autoencoder
Terminology

Encoder (gφ) - Translates the original high-dimensional input
into latent low-dimensional code.
Decoder (fθ) - Recovers data from the latent code.
Objective function - (φ, θ) are learned together to output a
reconstructed data sample same as the original input i.e.

(φ∗,θ∗) = argminφ,θ LAE(φ, θ) = 1
n
∑n

i=1(xi − fθ(gφ(xi)))2
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Autoencoder types Denoising Autoencoder

Autoencoder types
Denoising Autoencoder

[Credit: Lilian Weng]

Suchismit Mahapatra Autoencoders 14 / 24



Autoencoder types Sparse Autoencoder

Autoencoder types
Sparse Autoencoder

Applies a “sparse” constraint on the hidden unit activation to
avoid over-�tting and improve robustness.
Forces the model to only have a small number of hidden units
being activated at the simultaneously.
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Autoencoder types k-Sparse Autoencoder

Autoencoder types
k-Sparse Autoencoder

Sparsity is enforced by only keeping the top-k highest activated
units in the bottleneck layer using a linear activation function.

[Credit: Lilian Weng]
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Autoencoder types Contractive Autoencoder

Autoencoder types
Contractive Autoencoder

Encourages learnt representations to stay in a “contractive”
space.
Adds regularization term in the loss function to penalize the
representation from being too sensitive to the input.∥∥Jf (x)∥∥2F =∑i,j

(∂hj(x)
∂xi

)2
Thus improves the robustness to small perturbations.
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Autoencoder types Variational Autoencoder

Autoencoder types
Variational Autoencoder

Instead of mapping the input to a �xed vector, the variational
autoencoder maps it into a distribution.

[Credit: Lilian Weng]
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Variational Autoencoder Overview

Variational Autoencoder
Overview

The relationship between high-dimensional input x and the latent
code z can be fully de�ned using :-

Prior pθ(z)
Likelihood pθ(x|z)
Posterior pθ(z|x)
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Variational Autoencoder Overview

Variational Autoencoder
Overview

The conditional probability pθ(x|z) de�nes a generative model,
similar to decoder fθ(x|z). Also known as probabilistic decoder.
The approximation function qφ(z|x) is the probabilistic encoder,
similar to gφ(x|z).
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Variational Autoencoder Encoder

Variational Autoencoder
Encoder

Typically implemented using a neural network qφ(z|x).
Takes high-dimensional input x as input and outputs encoding z
drawn from a Gaussian distribution parametrized by φ.
Usually ‖z‖ � ‖x‖.
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Variational Autoencoder Decoder

Variational Autoencoder
Decoder

Typically implemented using a neural network pθ(x|z).
Takes encoding z as input and outputs a reconstruction x′ of the
original high-dimensional input x.
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Variational Autoencoder Loss function

Variational Autoencoder
Loss function

x′ is reconstructed from latent code z.
Ascertains how much information is lost during transition from x
to z to x′.
Measured using reconstruction log-likelihood log pφ(x|z).
Tells us concretely how well the decoder has reconstructed the
original input from the latent code z.
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Variational Autoencoder Probabilistic Model Perspective

Variational Autoencoder
Probabilistic Model Perspective

Data x and latent variables z.
Joint PDF of model p(x, z) = p(x|z)p(z).
Decomposes it into likelihood p(x|z) and prior p(z) terms.
Generative process :-
– Draw z ∼ p(z)
– Draw x ∼ p(x|z)

[Credit: Carl Doersch]
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